Precipitation and Cloud Structures of Intense Rain during the 2013 Great Colorado Flood

Katja Friedrich Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
,
Evan A. Kalina Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Evan A. Kalina in
Current site
Google Scholar
PubMed
Close
,
Joshua Aikins Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Joshua Aikins in
Current site
Google Scholar
PubMed
Close
,
David Gochis National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David Gochis in
Current site
Google Scholar
PubMed
Close
, and
Roy Rasmussen National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radar and disdrometer observations collected during the 2013 Great Colorado Flood are used to diagnose the spatial and vertical structure of clouds and precipitation during episodes of intense rainfall. The analysis focuses on 30 h of intense rainfall in the vicinity of Boulder, Colorado, during 2200–0400 UTC 11–13 September. The strongest rainfall occurred along lower parts of the Colorado Front Range at >1.6 km MSL and on the northern side of the Palmer Divide. The vertical structure of clouds and horizontal distribution of rainfall are strongly linked to upslope flow and low-level forcing, which resulted in surface convergence. During times of weak forcing, shallow convection produced rain at and below the melting layer through collision–coalescence and, to a lesser extent, riming. A mesoscale circulation interacting with the local terrain produced convective rainfall with high cloud tops that favored ice crystal production. During moderate forcing with cloud tops slightly exceeding the 0°C level, both cold- and warm-phase microphysical processes dominated. Less rain with weaker rainfall rates was observed over the higher-elevation stations compared to the lower-elevation stations across the foothills.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Katja Friedrich, Dept. of Atmospheric and Oceanic Sciences, University of Colorado Boulder, UCB 311, Boulder, CO 80309. E-mail: katja.friedrich@colorado.edu

Abstract

Radar and disdrometer observations collected during the 2013 Great Colorado Flood are used to diagnose the spatial and vertical structure of clouds and precipitation during episodes of intense rainfall. The analysis focuses on 30 h of intense rainfall in the vicinity of Boulder, Colorado, during 2200–0400 UTC 11–13 September. The strongest rainfall occurred along lower parts of the Colorado Front Range at >1.6 km MSL and on the northern side of the Palmer Divide. The vertical structure of clouds and horizontal distribution of rainfall are strongly linked to upslope flow and low-level forcing, which resulted in surface convergence. During times of weak forcing, shallow convection produced rain at and below the melting layer through collision–coalescence and, to a lesser extent, riming. A mesoscale circulation interacting with the local terrain produced convective rainfall with high cloud tops that favored ice crystal production. During moderate forcing with cloud tops slightly exceeding the 0°C level, both cold- and warm-phase microphysical processes dominated. Less rain with weaker rainfall rates was observed over the higher-elevation stations compared to the lower-elevation stations across the foothills.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Katja Friedrich, Dept. of Atmospheric and Oceanic Sciences, University of Colorado Boulder, UCB 311, Boulder, CO 80309. E-mail: katja.friedrich@colorado.edu
Save
  • Andric, J., Zrnic D. , Straka J. , and Melnikov V. , 2010: The enhanced ZDR signature in stratiform clouds above melting layer. Preprints, 13th Conf. on Cloud Physics, Portland, OR, Amer. Meteor. Soc., P2.89. [Available online at http://ams.confex.com/ams/pdfpapers/171308.pdf.]

  • Benavides-Solorio, J., and MacDonald L. H. , 2001: Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrol. Processes, 15, 29312952, doi:10.1002/hyp.383.

    • Search Google Scholar
    • Export Citation
  • Caracena, F., Maddox R. A. , Hoxit L. R. , and Chappell C. F. , 1979: Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 117, doi:10.1175/1520-0493(1979)107<0001:MOTBTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, D. L., Doesken N. J. , and Stanton W. P. , 1991: Colorado floods and droughts. National Water Summary 1988–89: Hydrologic events and floods and droughts, USGS Water Supply Paper 2375, R. W. Paulson et al., Eds., U S. Dept. of the Interior, 207–214. [Available online at http://pubs.er.usgs.gov/publication/wsp2375.]

  • DeMott, C. A., and Rutledge S. A. , 1998: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55, 27302747, doi:10.1175/1520-0469(1998)055<2730:TVSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Higgins S. , Masters F. J. , and Lopez C. R. , 2013a: Articulating and stationary PARSIVEL disdrometer in severe weather. J. Atmos. Oceanic Technol., 30, 20632080, doi:10.1175/JTECH-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Kalina E. A. , Masters F. J. , and Lopez C. R. , 2013b: Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon. Wea. Rev., 141, 11821203, doi:10.1175/MWR-D-12-00116.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Kalina E. A. , Aikins J. , Gochis D. , Ikeda K. , Kucera P. , and Steiner M. , 2015: Raindrop size distribution and rain characteristics during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 53–72, doi:10.1175/JHM-D-14-0184.1.

  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00241.1, in press.

  • Godt, J. W., and Coe J. A. , 2007: Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado. Geomorphology, 84, 8097, doi:10.1016/j.geomorph.2006.07.009.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Christian H. J. , 1993: Global observations of lightning. Global Change Atlas, R. Gurney, J. Foster, and C. Parkinson, Eds., Cambridge University Press, 325–355.

  • Gunn, R., and Kinzer G. D. , 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heggli, M. F., and Rauber R. M. , 1988: The characteristics and evolution of supercooled water in wintertime storms over the Sierra Nevada: A summary of microwave radiometric measurements taken during the Sierra cooperative pilot project. J. Appl. Meteor., 27, 9891015, doi:10.1175/1520-0450(1988)027<0989:TCAEOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirschboeck, K. K., 1991: Climate and floods. National Water Summary 1988–89: Hydrologic events and floods and droughts, USGS Water Supply Paper 2375, R. W. Paulson et al., Eds., U.S. Dept. of the Interior, 67–88. [Available online at http://pubs.er.usgs.gov/publication/wsp2375.]

  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Hubbert, J., and Bringi V. N. , 1995: An iterative filtering technique for the analysis of coplanar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, doi:10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., Rasmussen R. M. , Hall W. D. , and Thompson G. , 2007: Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2. J. Atmos. Sci., 64, 30163043, doi:10.1175/JAS3999.1.

    • Search Google Scholar
    • Export Citation
  • International and Scientific Management Group for GATE, 1974: GATE. Bull. Amer. Meteor. Soc., 55, 711744, doi:10.1175/1520-0477(1974)055<0711:G>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and Rutledge S. A. , 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., Thomas R. J. , Rison W. , Hamlin T. , Harlin J. , and Davis M. , 2000: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81, 2125, doi:10.1029/00EO00014.

    • Search Google Scholar
    • Export Citation
  • Lang, T. S., Rutledge S. A. , Dolan B. , Krehbiel P. , Rison W. , and Lindsey D. T. , 2014: Lightning in wildfire smoke plumes observed in Colorado during summer 2012. Mon. Wea. Rev., 142, 489507, doi:10.1175/MWR-D-13-00184.1.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and Joss J. , 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and Blahak U. , 2001: Estimation of the equivalent radar reflectivity factor from measured snow size spectra. J. Appl. Meteor., 40, 843849, doi:10.1175/1520-0450(2001)040<0843:EOTERR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., Kunz M. , and Schmid W. , 1999: On the performance of a low-cost K-band Doppler radar for quantitative rain measurement. J. Atmos. Oceanic Technol., 16, 379387, doi:10.1175/1520-0426(1999)016<0379:OTPOAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Caracena F. , Hoxit L. R. , and Chappell C. F. , 1977: Meteorological aspects of the Big Thompson flash flood of 31 July 1976. NOAA Tech. Rep. ERL 388-APCL 41, 88 pp.

  • Maddox, R. A., Hoxit L. R. , Chappell C. F. , and Caracena F. , 1978: Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375389, doi:10.1175/1520-0493(1978)106<0375:COMAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173, doi:10.1175/1520-0469(1987)044<0159:DOSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., and Doesken N. J. , 1997: Final report: Colorado extreme precipitation data study. Climatology Rep. 97-1, Dept. of Atmospheric Science, Colorado State University, 107 pp. [Available online at http://ccc.atmos.colostate.edu/pdfs/Climo_97-1_Extreme_ppt.pdf.]

  • Moody, J. A., and Martin D. A. , 2001: Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Processes Landforms, 26, 10491070, doi:10.1002/esp.253.

    • Search Google Scholar
    • Export Citation
  • OFCM, 2006: Doppler radar meteorological observations: Part C, WSR-88D products and algorithms. Federal Meteorological Handbook 11, Rep. FCM-H11C-2006, Dept. of Commerce, 5-1–5-23. [Available online at http://www.ofcm.gov/fmh11/fmh11C.htm.]

  • Orville, R. E., and Henderson R. W. , 1986: Global distribution of midnight lightning: December 1997 to August 1978. Mon. Wea. Rev., 114, 26402653, doi:10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, G., Fischer B. , and Andersson T. , 2002: Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res., 7, 353362.

    • Search Google Scholar
    • Export Citation
  • Peters, G., Fischer B. , Münster H. , Clemens M. , and Wagner A. , 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 19301949, doi:10.1175/JAM2316.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191216, doi:10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Grant L. O. , 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part II: Spatial distribution and microphysical characteristics. J. Climate Appl. Meteor., 25, 489504, doi:10.1175/1520-0450(1986)025<0489:TCADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Grant L. O. , 1987: Supercooled liquid water structure of a shallow orographic cloud system in southern Utah. J. Climate Appl. Meteor., 26, 208215, doi:10.1175/1520-0450(1987)026<0208:SLWSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., Grant L. O. , Feng D. X. , and Snider J. B. , 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part I: Temporal variations. J. Climate Appl. Meteor., 25, 468488, doi:10.1175/1520-0450(1986)025<0468:TCADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rison, W., Thomas R. J. , Krehbiel P. R. , Hamlin T. , and Harlin J. , 1999: A GPS-based three-dimensional Lightning Mapping System: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, doi:10.1029/1999GL010856.

    • Search Google Scholar
    • Export Citation
  • Rison, W., Krehbiel P. R. , Thomas R. J. , Rodeheffer D. , and Fuchs B. , 2012: The Colorado Lightning Mapping Array. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract AE23B-0319.

  • Rollenbeck, R., Bendix J. , Fabian P. , Boy J. , Wilcke W. , Dalitz H. , Oesker M. , and Emck P. , 2007: Comparison of different techniques for the measurement of precipitation in tropical montane rain forest regions. J. Atmos. Oceanic Technol., 24, 156168, doi:10.1175/JTECH1970.1.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., Williams E. R. , and Keenan D. , 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 316, doi:10.1175/1520-0477(1992)073<0003:TDUDAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Zrnic D. S. , and Gordon B. A. , 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, doi:10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410415, doi:10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Crook N. A. , 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sveinsson, O., Salas J. , and Boes D. , 2002: Regional frequency analysis of extreme precipitation in northeastern Colorado and Fort Collins Flood of 1997. J. Hydrol. Eng., 7, 4963, doi:10.1061/(ASCE)1084-0699(2002)7:1(49).

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., and Zipser J. , 1986: A radar study of convective cells in mesoscale systems in GATE. Part II: Life cycles of convective cells. J. Atmos. Sci., 43, 199218, doi:10.1175/1520-0469(1986)043<0199:ARSOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., Krehbiel P. R. , Rison W. , Hamlin T. , Harlin J. , and Shown D. , 2001: Observations of VHF source powers radiated by lightning. Geophys. Res. Lett., 28, 143146, doi:10.1029/2000GL011464.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Hartmann P. , Battaglia A. , Gage K. S. , Clark W. L. , and Williams C. R. , 2009: A field study of reflectivity and ZR relations using vertically pointing radars and disdrometers. J. Atmos. Oceanic Technol., 26, 11201134, doi:10.1175/2008JTECHA1163.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, J. R., Schultz D. M. , Ryzhkov A. V. , and Holle R. L. , 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501, doi:10.1175/1520-0493(2001)129<0486:MSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trivej, P., and Stevens B. , 2010: The echo size distribution of precipitation shallow cumuli. J. Atmos. Sci., 67, 788804, doi:10.1175/2009JAS3178.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Zrnic D. S. , Ellis S. M. , Oye R. , Ryzhkov A. V. , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wagenbrenner, J. W., MacDonald L. H. , and Rough D. , 2006: Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range. Hydrol. Processes, 20, 29893006, doi:10.1002/hyp.6146.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., Gruntfest E. , and Levy G. M. , 2000: Two floods in Fort Collins, Colorado: Learning from a natural disaster. Bull. Amer. Meteor. Soc., 81, 23592366, doi:10.1175/1520-0477(2000)081<2359:TFIFCC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Lukas R. , 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Neiman P. J. , Ralph F. M. , Kingsmill D. E. , and Persson P. O. G. , 2003: coastal orographic rainfall processes observed by radar during the California land-falling jets experiment. J. Hydrometeor., 4, 264282, doi:10.1175/1525-7541(2003)4<264:CORPOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., Rutledge S. A. , and Tessendorf S. A. , 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., Rutledge S. A. , Geotis S. G. , Renno N. , Rasmussen E. , and Rickenbach T. , 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 13861395, doi:10.1175/1520-0469(1992)049<1386:ARAESO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and Houze R. A. Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 18371851, doi:10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Lutz K. R. , 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 383 121 9
PDF Downloads 272 81 8