Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4)

Ally M. Toure * Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Universities Space Research Association, Columbia, Maryland

Search for other papers by Ally M. Toure in
Current site
Google Scholar
PubMed
Close
,
Matthew Rodell * Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Matthew Rodell in
Current site
Google Scholar
PubMed
Close
,
Zong-Liang Yang Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Zong-Liang Yang in
Current site
Google Scholar
PubMed
Close
,
Hiroko Beaudoing * Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Hiroko Beaudoing in
Current site
Google Scholar
PubMed
Close
,
Edward Kim * Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Edward Kim in
Current site
Google Scholar
PubMed
Close
,
Yongfei Zhang Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Yongfei Zhang in
Current site
Google Scholar
PubMed
Close
, and
Yonghwan Kwon Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Yonghwan Kwon in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to January 2011 over the Northern Hemisphere poleward of 30°N. Simulated snow-cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow depth from the National Weather Service Cooperative Observer (COOP) program, and Snowpack Telemetry (SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of −1.54 × 102 km2. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow–no snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the average bias (RMSE) of snow depth and SWE being 0.044 m (0.19 m) and −0.010 m (0.04 m), respectively. CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve the CLM4 snow estimates and constitutes a benchmark against which improvement of the model through data assimilation can be measured.

Corresponding author address: Matthew Rodell, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Code 617, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: matthew.rodell@nasa.gov

Abstract

This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to January 2011 over the Northern Hemisphere poleward of 30°N. Simulated snow-cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow depth from the National Weather Service Cooperative Observer (COOP) program, and Snowpack Telemetry (SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of −1.54 × 102 km2. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow–no snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the average bias (RMSE) of snow depth and SWE being 0.044 m (0.19 m) and −0.010 m (0.04 m), respectively. CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve the CLM4 snow estimates and constitutes a benchmark against which improvement of the model through data assimilation can be measured.

Corresponding author address: Matthew Rodell, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Code 617, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: matthew.rodell@nasa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, 150 pp. [Available online at http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/HRL_PUBS_51-100/81_A_POINT_ENERGY_AND_MASS.pdf.]

  • Arsenault, K. R., Houser P. R. , and De Lannoy G. J. M. , 2014: Evaluation of the MODIS snow cover fraction product. Hydrol. Processes, 28, 980–998, doi:10.1002/hyp.9636.

  • Bamzai, A. S., and Shukla J. , 1999: Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J. Climate, 12, 31173132, doi:10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barrett, A., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) products at NSIDC. NSIDC Special Rep. 11, 19 pp. [Available online at https://nsidc.org/pubs/documents/special/nsidc_special_report_11.pdf.]

  • Beven, K. J., and Kirkby M. J. , 1979: A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369, doi:10.1080/02626667909491834.

    • Search Google Scholar
    • Export Citation
  • Bitner, D., Carroll T. , Cline D. , and Romanov P. , 2002: An assessment of the differences between three satellite snow cover mapping techniques. Hydrol. Processes, 16, 3723–3733, doi:10.1002/hyp.1231.

  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., 2010: Analysis of snow cover variability and change in Québec, 1948–2005. Hydrol. Processes, 24, 19291954, doi:10.1002/hyp.7565.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and Mote P. , 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 21242145, doi:10.1175/2008JCLI2665.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and Brasnett B. , 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data. Environment Canada, National Snow and Ice Data Center, Boulder, CO, digital media, updated annually, accessed 1 October 2012. [Available online at https://nsidc.org/data/docs/daac/nsidc0447_CMC_snow_depth/.]

  • Brown, R. D., Brasnett B. , and Robinson D. , 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 114, doi:10.3137/ao.410101.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., Derksen C. , and Wang L. , 2010: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res., 115, D16111, doi:10.1029/2010JD013975.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., Pinker R. T. , and Deviatova E. , 2005: Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data. J. Hydrometeor., 6, 10021017, doi:10.1175/JHM447.1.

    • Search Google Scholar
    • Export Citation
  • Brun, E., 1989: Investigation of wet-snow metamorphism in respect of liquid water content. Ann. Glaciol., 13, 2226.

  • Chapin, F. S., and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657660, doi:10.1126/science.1117368.

    • Search Google Scholar
    • Export Citation
  • Clifford, D., 2010: Global estimates of snow water equivalent from passive microwave instruments: History, challenges and future developments. Int. J. Remote Sens., 31, 37073726, doi:10.1080/01431161.2010.483482.

    • Search Google Scholar
    • Export Citation
  • Clow, D. W., Nanus L. , Verdin K. L. , and Schmidt J. , 2012: Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA. Hydrol. Processes, 26, 25832591, doi:10.1002/hyp.9385.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., 1994: Snow cover and climate. Weather, 49, 150156, doi:10.1002/j.1477-8696.1994.tb05997.x.

  • Cohen, J., and Rind D. , 1991: The effect of snow cover on climate. J. Climate, 4, 689706, doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Entekhabi D. , 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345348, doi:10.1029/1998GL900321.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Zeng Q. , 1997: A land surface model (IAP94) for climate studies. Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14, 433460, doi:10.1007/s00376-997-0063-4.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023, doi:10.1175/BAMS-84-8-1013.

  • Dewey, K. F., 1977: Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon. Wea. Rev., 105, 15941597, doi:10.1175/1520-0493(1977)105<1594:DMAMTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 2002: Physical Hydrology. 2nd ed., Prentice Hall, 646 pp.

  • Ducharne, A., Koster R. D. , Suarez M. J. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J. Geophys. Res., 105, 24 82324 838, doi:10.1029/2000JD900328.

    • Search Google Scholar
    • Export Citation
  • Durre, I., Menne M. J. , Gleason B. E. , Houston T. G. , and Vose R. S. , 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and Zender C. S. , 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32, L06501, doi:10.1029/2004GL022076.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and Zender C. S. , 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., Zender C. S. , Randerson J. T. , and Rasch P. J. , 2007: Present day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.

    • Search Google Scholar
    • Export Citation
  • Forman, B. A., Reichle R. H. , and Rodell M. , 2012: Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Water Resour. Res., 48, W01507, doi:10.1029/2011WR011239.

    • Search Google Scholar
    • Export Citation
  • Frei, A., and Lee S. , 2010: A comparison of optical-band based snow extent products during spring over North America. Remote Sens. Environ., 114, 19401948, doi:10.1016/j.rse.2010.03.015.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., and Legates D. R. , 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75, 215227, doi:10.1175/1520-0477(1994)075<0215:TAOUSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., and Riggs G. A. , 2007: Accuracy assessment of the MODIS snow-cover products. Hydrol. Processes, 21, 15341547, doi:10.1002/hyp.6715.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Riggs G. A. , Salomonson V. V. , DiGirolamo N. E. , and Bayr K. J. , 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181194, doi:10.1016/S0034-4257(02)00095-0.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Salomonson V. V. , and Riggs G. A. , 2006a: MODIS/Aqua snow cover daily L3 global 0.05deg CMG, version 5. National Snow and Ice Data Center, Boulder, CO, digital media, accessed 1 December 2011. [Available online at http://nsidc.org/data/myd10c1.]

  • Hall, D. K., Salomonson V. V. , and Riggs G. A. , 2006b: MODIS/Terra snow cover daily L3 global 0.05deg CMG, version 5. National Snow and Ice Data Center, Boulder, CO, digital media, accessed 1 December 2011.

  • Helfrich, S. R., McNamara D. , Ramsay B. H. , Baldwin T. , and Kasheta T. , 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Processes, 21, 15761586, doi:10.1002/hyp.6720.

    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • Karl, T. R., Groisman P. Y. , Knight R. W. , and Heim R. R. , 1993: Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J. Climate, 6, 13271344, doi:10.1175/1520-0442(1993)006<1327:RVOSCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, A. G., and Barnett A. C. , 2003: Validation of daily MODIS snow cover maps of the Upper Rio Grande river basin for the 2000–2001 snow year. Remote Sens. Environ., 86, 162176, doi:10.1016/S0034-4257(03)00097-X.

    • Search Google Scholar
    • Export Citation
  • Kluzek, E., 2012: CESM Research Tools: CLM4 in CESM1.0.4 User’s Guide Documentation. Tech. Doc., 164 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/clm/index.shtml.]

  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Kukla, G. J., 1981: Snow covers and climate. Glaciological data: Snow watch 1980, Rep. GD-11, G. Kukla, A. Hecht, and D. Wiesnet, Eds., World Data Center A for Glaciology, Boulder, CO, 27–39. [Available online at http://nsidc.org/pubs/documents/gd/GD-11_web.pdf]

  • Lawrence, D. M., and Slater A. , 2010: The contribution of snow condition trends to future ground, climate. Climate Dyn., 34, 969981, doi:10.1007/s00382-009-0537-4.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

  • Li, H., Huang M. , Wigmosta M. S. , Ke Y. , Coleman A. M. , Leung L. R. , Wang A. , and Ricciuto D. M. , 2011: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed. J. Geophys. Res., 116, D24120, doi:10.1029/2011JD016276.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 13811397, doi:10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Rhoads J. D. , Dubayah R. O. , and Lettenmaier D. P. , 2003: Evaluation of the snow-covered area data product from MODIS. Hydrol. Processes, 17, 5971, doi:10.1002/hyp.1193.

    • Search Google Scholar
    • Export Citation
  • Moser, C. L., Tootle G. A. , Oubeidillah A. A. , and Lakshmi V. , 2011: A comparison of SNOTEL and AMSR-E snow water equivalent data sets in western US watersheds. Int. J. Remote Sens., 32, 66116629, doi:10.1080/01431161.2010.512936.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Yang Z.-L. , 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7, 937952, doi:10.1175/JHM538.1.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Yang Z.-L. , 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res., 112, D21101, doi:10.1029/2007JD008674.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , and Gulden L. E. , 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110, D21106, doi:10.1029/2005JD006111.

    • Search Google Scholar
    • Export Citation
  • Oleson, K., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Peterson, D. H., Smith R. E. , Dettinger M. D. , Cayan D. R. , and Riddle L. , 2000: An organized signal in snowmelt runoff over the western United States. J. Amer. Water Resour. Assoc., 36, 421432, doi:10.1111/j.1752-1688.2000.tb04278.x.

    • Search Google Scholar
    • Export Citation
  • Ramsay, B., 1998: The interactive multisensor snow and ice mapping system. Hydrol. Processes, 12, 15371546, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.0.CO;2-A.

    • Search Google Scholar
    • Export Citation
  • Rango, A., Landesa E. G. , Bleiweiss M. , Havstad K. , and Tanksley K. , 2003: Improved satellite snow mapping, snowmelt runoff forecasting, and climate change simulations in the Upper Rio Grande basin. World Resour. Rev., 15, 2641.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., 2012: The MERRA-Land Data Product (version 1.2). GMAO Office Note 3, 38 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Reichle541.pdf.]

  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Toure A. M. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2008: The GEOS-5 Data Assimilation System Documentation of Versions 5.0.1 and 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, Vol. 27, 92 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/tm27.pdf.]

  • Rienecker, M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Riggs, G. A., and Hall D. K. , 2012: Improved snow mapping accuracy with revised MODIS snow algorithm. Proc. 69th Annual Eastern Snow Conf., Claryville, NY, Eastern Snow Conference, 209–214. [Available online at http://www.easternsnow.org/proceedings/2012/riggs_and_hall.pdf.]

  • Serreze, M. C., Clark M. P. , Armstrong R. L. , McGuiness D. A. , and Pulwarty R. S. , 1999: Characteristics of the western United States snowpack from Snowpack Telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., Uppala S. M. , Dee D. , and Kobayashi S. , 2007: ERA-Interim: New ECMWF 759 reanalysis product from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Simpson, J. J., Stitt J. R. , and Sienko M. , 1998: Improved estimates of the areal extent of snow cover from AVHRR data. J. Hydrol., 204, 123, doi:10.1016/S0022-1694(97)00087-5.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., Ducharne A. , Koster R. D. , and Suarez M. J. , 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228242, doi:10.1175/1525-7541(2001)002<0228:TIODSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., Holmgren J. , and Liston G. E. , 1995: A seasonal snow cover classification system for local to global applications. J. Climate, 8, 12611283, doi:10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., Taras B. , Liston G. E. , Derksen C. , Jonas T. , and Lea J. , 2010: Estimating snow water equivalent using snow depth data and climate classes. J. Hydrometeor., 11, 13801394, doi:10.1175/2010JHM1202.1.

    • Search Google Scholar
    • Export Citation
  • Su, H., Yang Z.-L. , Dickinson R. E. , Wilson C. R. , and Niu G.-Y. , 2010: Multisensor snow data assimilation at the continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information. J. Geophys. Res., 115, D10104, doi:10.1029/2009JD013035.

    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., 2010: Assessing high-latitude winter precipitation from global precipitation analyses using GRACE. J. Hydrometeor., 11, 405420, doi:10.1175/2009JHM1194.1.

    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., and Lawrence M. D. , 2012: A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance. J. Geophys. Res., 117, D21107, doi:10.1029/2012JD018178.

    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., Fletcher C. G. , and Derksen C. , 2014: The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. J. Geophys. Res. Atmos., 119, 98109821, doi:10.1002/2014JD021858.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and Slingo J. M. , 2011: Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM. Climate Dyn., 36, 17171735, doi:10.1007/s00382-010-0805-3.

    • Search Google Scholar
    • Export Citation
  • Vertenstein, M., Craig T. , Middleton A. , Feddema D. , and Fisher C. , 2012: CESM1.0.4 user’s guide. Tech. Doc., 146 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_4/ug.pdf.]

  • Warren, S. G., and Wiscombe W. J. , 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 27342745, doi:10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 91, Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1586 625 89
PDF Downloads 821 155 13