Raindrop Size Distribution and Rain Characteristics during the 2013 Great Colorado Flood

Katja Friedrich Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
,
Evan A. Kalina Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Evan A. Kalina in
Current site
Google Scholar
PubMed
Close
,
Joshua Aikins Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Joshua Aikins in
Current site
Google Scholar
PubMed
Close
,
Matthias Steiner National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Matthias Steiner in
Current site
Google Scholar
PubMed
Close
,
David Gochis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David Gochis in
Current site
Google Scholar
PubMed
Close
,
Paul A. Kucera National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Paul A. Kucera in
Current site
Google Scholar
PubMed
Close
,
Kyoko Ikeda National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kyoko Ikeda in
Current site
Google Scholar
PubMed
Close
, and
Juanzhen Sun National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Juanzhen Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Drop size distributions observed by four Particle Size Velocity (PARSIVEL) disdrometers during the 2013 Great Colorado Flood are used to diagnose rain characteristics during intensive rainfall episodes. The analysis focuses on 30 h of intense rainfall in the vicinity of Boulder, Colorado, from 2200 UTC 11 September to 0400 UTC 13 September 2013. Rainfall rates R, median volume diameters D0, reflectivity Z, drop size distributions (DSDs), and gamma DSD parameters were derived and compared between the foothills and adjacent plains locations. Rainfall throughout the entire event was characterized by a large number of small- to medium-sized raindrops (diameters smaller than 1.5 mm) resulting in small values of Z (<40 dBZ), differential reflectivity Zdr (<1.3 dB), specific differential phase Kdp (<1° km−1), and D0 (<1 mm). In addition, high liquid water content was present throughout the entire event. Raindrops observed in the plains were generally larger than those in the foothills. DSDs observed in the foothills were characterized by a large concentration of small-sized drops (d < 1 mm). Heavy rainfall rates with slightly larger drops were observed during the first intense rainfall episode (0000–0800 UTC 12 September) and were associated with areas of enhanced low-level convergence and vertical velocity according to the wind fields derived from the Variational Doppler Radar Analysis System. The disdrometer-derived ZR relationships reflect how unusual the DSDs were during the 2013 Great Colorado Flood. As a result, ZR relations commonly used by the operational NEXRAD strongly underestimated rainfall rates by up to 43%.

Corresponding author address: Dr. Katja Friedrich, Dept. of Atmospheric and Oceanic Sciences, University of Colorado Boulder, UCB 311, Boulder, CO 80309. E-mail: katja.friedrich@colorado.edu

Abstract

Drop size distributions observed by four Particle Size Velocity (PARSIVEL) disdrometers during the 2013 Great Colorado Flood are used to diagnose rain characteristics during intensive rainfall episodes. The analysis focuses on 30 h of intense rainfall in the vicinity of Boulder, Colorado, from 2200 UTC 11 September to 0400 UTC 13 September 2013. Rainfall rates R, median volume diameters D0, reflectivity Z, drop size distributions (DSDs), and gamma DSD parameters were derived and compared between the foothills and adjacent plains locations. Rainfall throughout the entire event was characterized by a large number of small- to medium-sized raindrops (diameters smaller than 1.5 mm) resulting in small values of Z (<40 dBZ), differential reflectivity Zdr (<1.3 dB), specific differential phase Kdp (<1° km−1), and D0 (<1 mm). In addition, high liquid water content was present throughout the entire event. Raindrops observed in the plains were generally larger than those in the foothills. DSDs observed in the foothills were characterized by a large concentration of small-sized drops (d < 1 mm). Heavy rainfall rates with slightly larger drops were observed during the first intense rainfall episode (0000–0800 UTC 12 September) and were associated with areas of enhanced low-level convergence and vertical velocity according to the wind fields derived from the Variational Doppler Radar Analysis System. The disdrometer-derived ZR relationships reflect how unusual the DSDs were during the 2013 Great Colorado Flood. As a result, ZR relations commonly used by the operational NEXRAD strongly underestimated rainfall rates by up to 43%.

Corresponding author address: Dr. Katja Friedrich, Dept. of Atmospheric and Oceanic Sciences, University of Colorado Boulder, UCB 311, Boulder, CO 80309. E-mail: katja.friedrich@colorado.edu
Save
  • Barthazy, E., Henrich W. , and Waldvogel A. , 1998: Size distribution of hydrometeors through the melting layer. Atmos. Res., 47–48, 193208, doi:10.1016/S0169-8095(98)00065-9.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and Chuang C. H. , 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 15091524, doi:10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1953: Raindrop size-distribution in Hawaiian rains. J. Meteor., 10, 457473, doi:10.1175/1520-0469(1953)010<0457:RSDIHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 662 pp.

  • Bringi, V. N., Chandrasekar V. , Hubbert J. , Gorgucci E. , Randeu W. L. , and Schoenhuber M. , 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., Cifelli R. , Petersen W. A. , Rutledge S. A. , and Dias M. A. F. S. , 2001: Characteristics of Amazonian rain measured during TRMM-LBA. Preprints, 30th Conf. on Radar Meteorology, Munich, Germany. Amer. Meteor. Soc., 12A.9. [Available online at http://ams.confex.com/ams/30radar/techprogram/paper_21229.htm.]

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., Chandrasekar V. , Lim S. , Kennedy P. C. , Wang Y. , and Rutledge S. A. , 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, doi:10.1175/2010JTECHA1488.1.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and Sun J. , 2002: Assimilating radar, surface, and profiler data for the Sydney 2000 forecast demonstration project. J. Atmos. Oceanic Technol., 19, 888898, doi:10.1175/1520-0426(2002)019<0888:ARSAPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dolman, B. K., May P. T. , Reid I. M. , and Vincent R. A. , 2011: Profiler retrieved DSD evolution in the tropics and mid-latitudes. Preprints, 35th Conf. on Radar Meteorology, Pittsburgh, PA. Amer. Meteor. Soc., 8A.1. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191545.html.]

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Higgins S. , Masters F. J. , and Lopez C. R. , 2013a: Articulating and stationary PARSIVEL disdrometer in severe weather. J. Atmos. Oceanic Technol., 30, 20632080, doi:10.1175/JTECH-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Kalina E. A. , Masters F. J. , and Lopez C. R. , 2013b: Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon. Wea. Rev., 141, 11821203, doi:10.1175/MWR-D-12-00116.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Kalina E. A. , Aikins J. , Gochis D. , and Rasmussen R. , 2015: Precipitation and cloud structures of intense rain during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 2752, doi:10.1175/JHM-D-14-0157.1.

  • Fujiwara, M., 1967: Raindrop size distribution in warm rain as measured in Hawaii. Tellus, 19, 392402, doi:10.1111/j.2153-3490.1967.tb01494.x.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, doi:10.1175/BAMS-D-13-00241.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and Srivastava R. C. , 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783, doi:10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and Berne A. , 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor., 12, 352370, doi:10.1175/2010JHM1244.1.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1967: Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure Appl. Geophys., 68, 240246, doi:10.1007/BF00874898.

    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., Friedrich K. , Ellis S. M. , and Burgess D. W. , 2014: Comparison of disdrometer and X-band mobile radar observations in convective precipitation. Mon. Wea. Rev., 142, 24142435, doi:10.1175/MWR-D-14-00039.1.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2006: DEVEX-disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour., 29, 311325, doi:10.1016/j.advwatres.2005.03.018.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and Zawadzki I. , 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44, 241255, doi:10.1175/JAM2183.1.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., Seed A. W. , and Zawadzki I. , 2007: Modeling the variability of drop size distributions in space and time. J. Appl. Meteor. Climatol., 46, 742756, doi:10.1175/JAM2505.1.

    • Search Google Scholar
    • Export Citation
  • List, R., Donaldson N. R. , and Stewart R. E. , 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. J. Atmos. Sci., 44, 362372, doi:10.1175/1520-0469(1987)044<0362:TEODST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and Joss J. , 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and Blahak U. , 2001: Estimation of the equivalent radar reflectivity factor from measured snow size spectra. J. Appl. Meteor., 40, 843849, doi:10.1175/1520-0450(2001)040<0843:EOTERR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. McK. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., Yuter S. E. , White A. B. , Matrosov S. Y. , Kingsmill D. E. , and Ralph F. M. , 2008: Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band. J. Hydrometeor., 9, 408425, doi:10.1175/2007JHM924.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Cifelli R. , Kennedy P. C. , Nesbitt S. , Rutledge S. A. , Bringi V. N. , and Martner B. E. , 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies. J. Atmos. Oceanic Technol., 23, 952963, doi:10.1175/JTECH1887.1.

    • Search Google Scholar
    • Export Citation
  • Miltenberger, A. K., Seifert A. , Joss H. , and Wernli H. , 2015: A scaling relation for warm-phase orographic precipitation: A Lagrangian analysis for 2D mountains. Quart. J. Roy. Meteor. Soc., 141, 21852198, doi:10.1002/qj.2514.

    • Search Google Scholar
    • Export Citation
  • Miriovsky, B. J., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43, 106118, doi:10.1175/1520-0450(2004)043<0106:AESOSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morales, A., Schumacher R. , and Kreidenweis S. , 2015: Mesoscale vortex development during extreme precipitation: Colorado, September 2013. Mon. Wea. Rev., doi:10.1175/MWR-D-15-0086.1, in press.

  • Munchak, S. J., Kummerow C. D. , and Elsaesser G. , 2012: Relationships between the raindrop size distribution and properties of the environment and clouds inferred from TRMM. J. Climate, 25, 29632978, doi:10.1175/JCLI-D-11-00274.1.

    • Search Google Scholar
    • Export Citation
  • Nešpor, V., Krajewski W. F. , and Kruger A. , 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17, 14831492, doi:10.1175/1520-0426(2000)017<1483:WIEORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191216, doi:10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Wolff D. B. , and Atlas D. , 1993: General probability-matched relations between radar reflectivity and rain rate. J. Appl. Meteor., 32, 5072, doi:10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and Houze R. A. , 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830, doi:10.1002/qj.67.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and Zrnić D. S. , 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249256, doi:10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , Melnikov V. M. , and Schuur T. J. , 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, doi:10.1175/JTECH1772.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , and Schuur T. J. , 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, doi:10.1175/JAM2213.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , Heinselman P. L. , Giangrande S. E. , and Zrnic D. S. , 2005c: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Sempere Torres, D., Porrà J. M. , and Creutin J.-D. , 1994: A general formulation for raindrop size distribution. J. Appl. Meteor., 33, 14941502, doi:10.1175/1520-0450(1994)033<1494:AGFFRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sempere Torres, D., Porrà J. M. , and Creutin J.-D. , 1998: Experimental evidence of a general description for raindrop size distribution properties. J. Geophys. Res., 103, 17851797, doi:10.1029/97JD02065.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

  • Smith, J. A., 1993: Marked point process models of raindrop-size distributions. J. Appl. Meteor., 32, 284296, doi:10.1175/1520-0450(1993)032<0284:MPPMOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Krajewski W. F. , 1993: A modeling study of rainfall rate–reflectivity relationships. Water Resour. Res., 29, 25052514, doi:10.1029/93WR00962.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410415, doi:10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and Smith J. A. , 1998: Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model. Atmos. Res., 47–48, 317326, doi:10.1016/S0169-8095(97)00086-0.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and Smith J. A. , 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteor., 39, 19231940, doi:10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and Smith J. A. , 2004: Scale-dependence of radar rainfall rates—An assessment based on raindrop spectra. J. Hydrometeor., 5, 11711180, doi:10.1175/JHM-383.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., Smith J. A. , and Uijlenhoet R. , 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61, 11141131, doi:10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Crook N. A. , 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Crook N. A. , 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852, doi:10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Crook N. A. , 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117132, doi:10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., Chen M. , and Wang Y. , 2010: A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project. Wea. Forecasting, 25, 17151735, doi:10.1175/2010WAF2222336.1.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Oury S. , Black R. A. , Amayenc P. , and Dou X. , 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., Petersen W. A. , Tokay A. , Schultz C. , and Gatlin P. , 2011: Drop size distribution comparisons between PARSIVEL and 2-D video disdrometers. Adv. Geosci., 30, 39, doi:10.5194/adgeo-30-3-2011.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Short D. A. , 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Petersen W. A. , Gatlin P. , and Wingo M. , 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, doi:10.1175/JTECH-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Wolff D. B. , and Petersen W. A. , 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, doi:10.1175/JTECH-D-13-00174.1.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., Smith J. A. , and Steiner M. , 2003: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60, 12201238, doi:10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Adams W. M. , and Bringi V. N. , 1991: Rigorous approach to polarimetric radar modeling of hydrometeor distributions. J. Appl. Meteor., 30, 10531063, doi:10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 10671078, doi:10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., Henrich W. , and Schmid W. , 1995: Raindrop size distributions and radar reflectivity profiles. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 2628.

  • Webster, P. J., and Lukas R. , 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., Kingsmill D. E. , Nance L. B. , and Löffler-Mang M. , 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, doi:10.1175/JAM2406.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 998 282 33
PDF Downloads 690 112 17