Atmospheric Rivers and Rainfall during NASA’s Iowa Flood Studies (IFloodS) Campaign

Munir A. Nayak IIHR–Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Munir A. Nayak in
Current site
Google Scholar
PubMed
Close
,
Gabriele Villarini IIHR–Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
, and
A. Allen Bradley IIHR–Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by A. Allen Bradley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric rivers (ARs) play a major role in causing extreme precipitation and flooding over the central United States (e.g., Midwest floods of 1993 and 2008). The goal of this study is to characterize rainfall associated with ARs over this region during the Iowa Flood Studies (IFloodS) campaign that took place in April–June 2013. Total precipitation during IFloodS was among the five largest accumulations recorded since the mid-twentieth century over most of this region, with three of the heavy rainfall events associated with ARs. As a preliminary step, the authors evaluate how well different remote sensing–based precipitation products captured the rainfall associated with the ARs and find that stage IV is the product that shows the closest agreement to the reference data. Two of the three ARs during IFloodS occurred within extratropical cyclones, with the moist ascent associated with the presence of cold fronts. In the third AR, mesoscale convective systems resulted in intense rainfall at many locations. In all the three cases, the continued supply of warm water vapor from the tropics and subtropics helped sustain the convective systems. Most of the rainfall during these ARs was concentrated within ~100 km of the AR major axis, and this is the region where the rainfall amounts were highly positively correlated with the vapor transport intensity. Rainfall associated with ARs tends to be larger as these events mature over time. Although no major diurnal variation is detected in the AR occurrences, rainfall amounts during nocturnal ARs were higher than for ARs that occurred during the daytime.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0185.s1.

Corresponding author address: Gabriele Villarini, IIHR–Hydroscience & Engineering, The University of Iowa, 306 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242. E-mail: gabriele-villarini@uiowa.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Abstract

Atmospheric rivers (ARs) play a major role in causing extreme precipitation and flooding over the central United States (e.g., Midwest floods of 1993 and 2008). The goal of this study is to characterize rainfall associated with ARs over this region during the Iowa Flood Studies (IFloodS) campaign that took place in April–June 2013. Total precipitation during IFloodS was among the five largest accumulations recorded since the mid-twentieth century over most of this region, with three of the heavy rainfall events associated with ARs. As a preliminary step, the authors evaluate how well different remote sensing–based precipitation products captured the rainfall associated with the ARs and find that stage IV is the product that shows the closest agreement to the reference data. Two of the three ARs during IFloodS occurred within extratropical cyclones, with the moist ascent associated with the presence of cold fronts. In the third AR, mesoscale convective systems resulted in intense rainfall at many locations. In all the three cases, the continued supply of warm water vapor from the tropics and subtropics helped sustain the convective systems. Most of the rainfall during these ARs was concentrated within ~100 km of the AR major axis, and this is the region where the rainfall amounts were highly positively correlated with the vapor transport intensity. Rainfall associated with ARs tends to be larger as these events mature over time. Although no major diurnal variation is detected in the AR occurrences, rainfall amounts during nocturnal ARs were higher than for ARs that occurred during the daytime.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0185.s1.

Corresponding author address: Gabriele Villarini, IIHR–Hydroscience & Engineering, The University of Iowa, 306 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242. E-mail: gabriele-villarini@uiowa.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Supplementary Materials

    • Supplemental Materials (DOCX 8.90 MB)
Save
  • Anderson, C. J., and Arritt R. W. , 2001: Mesoscale convective systems over the United States during the 1997–98 El Niño. Mon. Wea. Rev., 129, 24432457, doi:10.1175/1520-0493(2001)129<2443:MCSOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., Rink T. D. , Segal M. , Todey D. P. , Clark C. A. , Mitchell M. J. , and Labas K. M. , 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 21762192, doi:10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4, 317324, doi:10.1017/S1350482797000613.

    • Search Google Scholar
    • Export Citation
  • Budikova, D., Coleman J. S. M. , Strope S. A. , and Austin A. , 2010: Hydroclimatology of the 2008 Midwest floods. Water Resour. Res., 46, W12524, doi:10.1029/2010WR009206.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., Shaffrey L. C. , and Hodges K. I. , 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, doi:10.1175/2009JCLI3318.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, doi:10.1175/JHM-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. R. , 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Kinter J. L. III, 2009: The “Maya Express”: Floods in the U.S. Midwest. Eos, Trans. Amer. Geophys. Union, 90, 101102, doi:10.1029/2009EO120001.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Kinter J. L. III, 2010: Floods over the U.S. Midwest: A regional water cycle perspective. J. Hydrometeor., 11, 11721181, doi:10.1175/2010JHM1196.1.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and Rolph G. D. , 2015: HYSPLIT: Hybrid Single-Particle Lagrangian Integrated Trajectory Model. NOAA ARL READY, accessed 3 May 2015. [Available online at http://www.arl.noaa.gov/HYSPLIT.php.]

  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. J. , 2000: Improved United States precipitation quality control system and analysis. NOAA/CPC Atlas 7, 40 pp.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. International Geophysics Series, Vol. 104, Academic Press, 496 pp.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Changnon S. A. , and Angel J. R. , 1994: Climatic aspects of the 1993 upper Mississippi river basin flood. Bull. Amer. Meteor. Soc., 75, 811822, doi:10.1175/1520-0477(1994)075<0811:CAOTUM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and Villarini G. , 2013a: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, doi:10.1002/grl.50636.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and Villarini G. , 2013b: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, doi:10.1175/JCLI-D-13-00212.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and Villarini G. , 2015a: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382390, doi:10.1016/j.jhydrol.2014.12.010.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and Villarini G. , 2015b: The relationship between daily European precipitation and measures of atmospheric water vapour transport. Int. J. Climatol., 35, 21872192, doi:10.1002/joc.4119.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., Allan R. P. , Wood E. F. , Villarini G. , Brayshaw D. J. , and Wade A. J. , 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., Villarini G. , Allan R. P. , Wood E. F. , and Wade A. J. , 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, doi:10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Proc. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Maddox, R. A., Chappell C. F. , and Hoxit L. R. , 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • McMurdie, W. L., and Houze R. A. , 2006: Weather systems. Atmospheric Science, 2nd ed. J. M. Wallace, and P. V. Hobbs, Eds., Academic Press, 313–373.

  • Moore, B. J., Neiman P. J. , Ralph F. M. , and Barthold F. E. , 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., Glass F. H. , Graves C. E. , Rochette S. M. , and Singer M. J. , 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878, doi:10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, J., Lall U. , Kushnir Y. , Robertson A. W. , and Seager R. , 2013: Dynamical structure of extreme floods in the U.S. Midwest and the United Kingdom. J. Hydrometeor., 14, 485504, doi:10.1175/JHM-D-12-059.1.

    • Search Google Scholar
    • Export Citation
  • Nayak, M. A., Villarini G. , and Lavers D. A. , 2014: On the skill of numerical weather prediction models to forecast atmospheric rivers over the central United States. Geophys. Res. Lett., 41, 43544362, doi:10.1002/2014GL060299.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. D. , and Dettinger M. D. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Wick G. A. , Moore B. J. , Ralph F. M. , Spackman J. R. , and Ward B. , 2014: An airborne study of an atmospheric river over the subtropical Pacific during WISPAR: Dropsonde budget-box diagnostics and precipitation impacts in Hawaii. Mon. Wea. Rev., 142, 31993223, doi:10.1175/MWR-D-13-00383.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., and Zhu Y. , 1994: Tropospheric rivers: A one-year record and a possible application to ice core data. Geophys. Res. Lett., 21, 113116, doi:10.1029/93GL03113.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., Newell N. E. , Zhu Y. , and Scott C. , 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, doi:10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Coleman T. , Neiman P. J. , Zamora R. J. , and Dettinger M. D. , 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., Steenburgh W. J. , and Ralph F. M. , 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2001: Reexamining the cold conveyor belt. Mon. Wea. Rev., 129, 22052225, doi:10.1175/1520-0493(2001)129<2205:RTCCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Johnson R. H. , 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Johnson R. H. , 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, doi:10.1175/WAF900.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Villarini G. , Wright D. B. , and Krajewski W. , 2013: Extreme flood response: The June 2008 flooding in Iowa. J. Hydrometeor., 14, 18101825, doi:10.1175/JHM-D-12-0191.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K.-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., and Schumacher R. S. , 2014: A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses. Mon. Wea. Rev., 142, 31473162, doi:10.1175/MWR-D-13-00345.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Smith J. A. , Baeck M. L. , Marchok T. , and Vecchi G. A. , 2011a: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res., 116, D23116, doi:10.1029/2011JD016175.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Smith J. A. , Baeck M. L. , Vitolo R. , Stephenson D. B. , and Krajewski W. F. , 2011b: On the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol., 400, 103120, doi:10.1016/j.jhydrol.2011.01.027.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 648 301 20
PDF Downloads 364 130 7