Implications of the Methodological Choices for Hydrologic Portrayals of Climate Change over the Contiguous United States: Statistically Downscaled Forcing Data and Hydrologic Models

Naoki Mizukami * National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Naoki Mizukami in
Current site
Google Scholar
PubMed
Close
,
Martyn P. Clark * National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Martyn P. Clark in
Current site
Google Scholar
PubMed
Close
,
Ethan D. Gutmann * National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Ethan D. Gutmann in
Current site
Google Scholar
PubMed
Close
,
Pablo A. Mendoza * National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Pablo A. Mendoza in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Newman * National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Newman in
Current site
Google Scholar
PubMed
Close
,
Bart Nijssen University of Washington, Seattle, Washington

Search for other papers by Bart Nijssen in
Current site
Google Scholar
PubMed
Close
,
Ben Livneh Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Ben Livneh in
Current site
Google Scholar
PubMed
Close
,
Lauren E. Hay U.S. Geological Survey, Denver, Colorado

Search for other papers by Lauren E. Hay in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. Arnold U.S. Army Corps of Engineers, Seattle, Washington

Search for other papers by Jeffrey R. Arnold in
Current site
Google Scholar
PubMed
Close
, and
Levi D. Brekke ** U.S. Bureau of Reclamation, Denver, Colorado

Search for other papers by Levi D. Brekke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

Corresponding author address: Naoki Mizukami, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: mizukami@ucar.edu

Abstract

Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

Corresponding author address: Naoki Mizukami, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: mizukami@ucar.edu
Save
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, 150 pp. [Available online at http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/HRL_PUBS_51-100/81_A_POINT_ENERGY_AND_MASS.pdf.]

  • Andreadis, K. M., Storck P. , and Lettenmaier D. P. , 2009: Modeling snow accumulation and ablation processes in forested environments. Water Resour. Res., 45, W05429, doi:10.1029/2008WR007042.

    • Search Google Scholar
    • Export Citation
  • Bastola, S., Murphy C. , and Sweeney J. , 2011: The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Adv. Water Resour., 34, 562576, doi:10.1016/j.advwatres.2011.01.008.

    • Search Google Scholar
    • Export Citation
  • Battaglin, W. A., Hay L. E. , and Markstrom S. L. , 2011: Simulating the potential effects of climate change in two Colorado basins and at two Colorado ski areas. Earth Interact., 15, 123, doi:10.1175/2011EI373.1.

    • Search Google Scholar
    • Export Citation
  • Bennett, K. E., Werner A. T. , and Schnorbus M. , 2012: Uncertainties in hydrologic and climate change impact analyses in headwater basins of British Columbia. J. Climate, 25, 57115730, doi:10.1175/JCLI-D-11-00417.1.

    • Search Google Scholar
    • Export Citation
  • Bjerklie, D. M., Trombley T. J. , and Viger R. J. , 2011: Simulations of historical and future trends in snowfall and groundwater recharge for basins draining to Long Island Sound. Earth Interact., 15, doi:10.1175/2011EI374.1.

    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., Livneh B. , Oyler J. W. , Running S. W. , Nijssen B. , and Lettenmaier D. P. , 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, doi:10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Brekke, L., Wood A. , and Pruitt T. , 2014: Downscaled CMIP3 and CMIP5 hydrology projections: Release of hydrology projections, comparison with preceding information, and summary of user needs. USBR Tech Memo., 110 pp. [Available online at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf.]

  • Cayan, D. R., Das T. , Pierce D. W. , Barnett T. P. , Tyree M. , and Gershunov A. , 2010: Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA, 107, 21 27121 276, doi:10.1073/pnas.0912391107.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., and Lettenmaier D. P. , 2007: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol. Earth Syst. Sci., 11, 14171434, doi:10.5194/hess-11-1417-2007.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., Wood A. W. , Voisin N. , Lettenmaier D. P. , and Palmer R. N. , 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, doi:10.1023/B:CLIM.0000013684.13621.1f.

    • Search Google Scholar
    • Export Citation
  • Christiansen, D. E., Markstrom S. L. , and Hay L. E. , 2011: Impacts of climate change on the growing season in the United States. Earth Interact., 15, doi:10.1175/2011EI376.1.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2015a: A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res., 51, 2498–2514, doi:10.1002/2015WR017198.

  • Clark, M. P., and Coauthors, 2015b: A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resour. Res., 51, 2515–2542, doi:10.1002/2015WR017200.

  • Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108, 8845, doi:10.1029/2002JD003316.

    • Search Google Scholar
    • Export Citation
  • Crane, R. G., Yarnal B. , Barron E. J. , and Hewitson B. , 2002: Scale interactions and regional climate: Examples from the Susquehanna River basin. Hum. Ecol. Risk Assess., 8, 147158, doi:10.1080/20028091056782.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2008: Temperature and pressure dependence of the rain–snow phase transition over land and ocean. Geophys. Res. Lett., 35, L12802, doi:10.1029/2008GL033295.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Manabe S. , 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, doi:10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Déry, S. J., Stahl K. , Moore R. D. , Whitfield P. H. , Menounos B. , and Burford J. E. , 2009: Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res., 45, W04426, doi:10.1029/2008WR006975; Corrigendum, 45, W06701, doi:10.1029/2009WR008244.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., Cayan D. , Meyer M. , and Jeton A. , 2004: Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099. Climatic Change, 62, 283317, doi:10.1023/B:CLIM.0000013683.13346.4f.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Gao X. , Zhao M. , Guo Z. , Oki T. , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, doi:10.1175/BAMS-87-10-1381.

    • Search Google Scholar
    • Export Citation
  • Elsner, M., and Coauthors, 2010: Implications of 21st century climate change for the hydrology of Washington State. Climatic Change, 102, 225260, doi:10.1007/s10584-010-9855-0.

    • Search Google Scholar
    • Export Citation
  • Elsner, M., Gangopadhyay S. , Pruitt T. , Brekke L. D. , Mizukami N. , and Clark M. P. , 2014: How does the choice of distributed meteorological data affect hydrologic model calibration and streamflow simulations? J. Hydrometeor., 15, 13841403, doi:10.1175/JHM-D-13-083.1.

    • Search Google Scholar
    • Export Citation
  • Exbrayat, J.-F., Buytaert W. , Timbe E. , Windhorst D. , and Breuer L. , 2014: Addressing sources of uncertainty in runoff projections for a data scarce catchment in the Ecuadorian Andes. Climatic Change, 125, 221235, doi:10.1007/s10584-014-1160-x.

    • Search Google Scholar
    • Export Citation
  • Feld, S. I., Cristea N. C. , and Lundquist J. D. , 2013: Representing atmospheric moisture content along mountain slopes: Examination using distributed sensors in the Sierra Nevada, California. Water Resour. Res., 49, 44244441, doi:10.1002/wrcr.20318.

    • Search Google Scholar
    • Export Citation
  • Fritze, H., Stewart I. T. , and Pebesma E. , 2011: Shifts in western North American snowmelt runoff regimes for the recent warm decades. J. Hydrometeor., 12, 9891006, doi:10.1175/2011JHM1360.1.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E., Pruitt T. , Clark M. P. , Brekke L. , Arnold J. R. , Raff D. A. , and Rasmussen R. M. , 2014: An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour. Res., 50, 71677186, doi:10.1002/2014WR015559.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., Heinke J. , Voß F. , Eisner S. , Chen C. , Hagemann S. , and Ludwig F. , 2012: Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrol. Earth Syst. Sci., 16, 305318, doi:10.5194/hess-16-305-2012.

    • Search Google Scholar
    • Export Citation
  • Hanson, R. T., Flint L. E. , Flint A. L. , Dettinger M. D. , Faunt C. C. , Cayan D. , and Schmid W. , 2012: A method for physically based model analysis of conjunctive use in response to potential climate changes. Water Resour. Res., 48, W00L08, doi:10.1029/2011WR010774.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and Clark M. P. , 2003: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282, 5675, doi:10.1016/S0022-1694(03)00252-X.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., Markstrom S. L. , and Ward-Garrison C. , 2011: Watershed-scale response to climate change through the twenty-first century for selected basins across the United States. Earth Interact., 15, doi:10.1175/2010EI370.1.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., LaFontaine J. , and Markstrom S. L. , 2014: Evaluation of statistically downscaled GCM output as input for hydrological and stream temperature simulation in the Apalachicola–Chattahoochee–Flint River basin (1961–99). Earth Interact., 18, doi:10.1175/2013EI000554.1.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, doi:10.1073/pnas.0404500101.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2007: Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dyn., 28, 381407, doi:10.1007/s00382-006-0187-8.

    • Search Google Scholar
    • Export Citation
  • Hungerford, R. D., Nemani R. , Running S. W. , and Coughlan J. C. , 1989: MTCLIM: A mountain microclimate simulation model. U.S. Forest Service Research Paper INT-414, 52 pp. [Available online at http://www.fs.fed.us/rm/pubs_int/int_rp414.pdf.]

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Idso, S. B., 1981: A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies. Water Resour. Res., 17, 295304, doi:10.1029/WR017i002p00295.

    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., Running S. W. , and Nemani R. , 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor., 85, 8798, doi:10.1016/S0168-1923(96)02366-0.

    • Search Google Scholar
    • Export Citation
  • Koczot, K. M., Markstrom S. L. , and Hay L. E. , 2011: Effects of baseline conditions on the simulated hydrologic response to projected climate change. Earth Interact., 15, doi:10.1175/2011EI378.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

  • Lawrence, P. J., and Chase T. N. , 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Leavesley, G. H., and Stannard L. G. , 1995: The Precipitation–Runoff Modeling System—PRMS. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 281–310.

  • Leavesley, G. H., Lichty R. W. , Troutman B. M. , and Saindon L. G. , 1983: Precipitation–Runoff Modeling System: User’s manual. Water-Resources Investigations Rep. 83-4238, 206 pp. [Available online at http://pubs.usgs.gov/wri/1983/4238/report.pdf.]

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., and Lettenmaier D. P. , 2012: Multi-criteria parameter estimation for the Unified Land Model. Hydrol. Earth Syst. Sci., 16, 30293048, doi:10.5194/hess-16-3029-2012.

    • Search Google Scholar
    • Export Citation
  • Luce, C. H., and Holden Z. A. , 2009: Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophys. Res. Lett., 36, L16401, doi:10.1029/2009GL039407.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Mastin, M. C., Chase K. J. , and Dudley R. W. , 2011: Changes in spring snowpack for selected basins in the United States for different climate-change scenarios. Earth Interact., 15, doi:10.1175/2010EI368.1.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., 2007: Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Climatic Change, 82, 309325, doi:10.1007/s10584-006-9180-9.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Brekke L. , Pruitt T. , and Duffy P. B. , 2007: Fine-resolution climate projections enhance regional climate change impact studies. Eos, Trans. Amer. Geophys. Union, 88, 504, doi:10.1029/2007EO470006.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Hidalgo H. G. , Das T. , Dettinger M. D. , and Cayan D. R. , 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, doi:10.5194/hess-14-1125-2010.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and Coauthors, 2014: An enhanced archive facilitating climate impacts and adaptation analysis. Bull. Amer. Meteor. Soc., 95, 10111019, doi:10.1175/BAMS-D-13-00126.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., Covey C. , McAvaney B. , Latif M. , and Stouffer R. J. , 2005: Overview of the Coupled Model Intercomparison Project. Bull. Amer. Meteor. Soc., 86, 8993, doi:10.1175/BAMS-86-1-89.

    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., and Coauthors, 2015a: Effects of hydrologic model choice and calibration on the portrayal of climate change impacts. J. Hydrometeor., 16, 762780, doi:10.1175/JHM-D-14-0104.1.

    • Search Google Scholar
    • Export Citation
  • Mendoza, P. A., Clark M. P. , Mizukami N. , Gutmann E. D. , Arnold J. R. , Brekke L. D. , and Rajagopalan B. , 2015b: How do hydrologic modeling decisions affect the portrayal of climate change impacts?. Hydrol. Process., doi:10.1002/hyp.10684, in press.

    • Search Google Scholar
    • Export Citation
  • Miller, W. P., Butler R. , Piechota T. , Prairie J. , Grantz K. , and DeRosa G. , 2012: Water management decisions using multiple hydrologic models within the San Juan River basin under changing climate conditions. J. Water Resour. Plann. Manage., 138, 412420, doi:10.1061/(ASCE)WR.1943-5452.0000237.

    • Search Google Scholar
    • Export Citation
  • Miller, W. P., DeRosa G. M. , Gangopadhyay S. , and Valdés J. B. , 2013: Predicting regime shifts in flow of the Gunnison River under changing climate conditions. Water Resour. Res., 49, 29662974, doi:10.1002/wrcr.20215.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., Koren V. , Smith M. , Kingsmill D. , Zhang Z. , Cosgrove B. , and Cui Z. , 2013: The impact of precipitation type discrimination on hydrologic simulation: Rain–snow partitioning derived from HMT-West radar-detected brightband height versus surface temperature data. J. Hydrometeor., 14, 11391158, doi:10.1175/JHM-D-12-035.1.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., Clark M. P. , Slater A. G. , Brekke L. D. , Elsner M. M. , Arnold J. R. , and Gangopadhyay S. , 2014: Hydrologic implications of different large-scale meteorological model forcing datasets in mountainous regions. J. Hydrometeor., 15, 474488, doi:10.1175/JHM-D-13-036.1.

    • Search Google Scholar
    • Export Citation
  • Najafi, M. R., Moradkhani H. , and Jung I. W. , 2011: Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol. Processes, 25, 28142826, doi:10.1002/hyp.8043.

    • Search Google Scholar
    • Export Citation
  • Nasonova, O. N., Gusev Y. M. , and Kovalev Y. E. , 2011: Impact of uncertainties in meteorological forcing data and land surface parameters on global estimates of terrestrial water balance components. Hydrol. Processes, 25, 10741090, doi:10.1002/hyp.7651.

    • Search Google Scholar
    • Export Citation
  • Nicholas, R. E., and Battisti D. S. , 2012: Empirical downscaling of high-resolution regional precipitation from large-scale reanalysis fields. J. Appl. Meteor. Climatol., 51, 100114, doi:10.1175/JAMC-D-11-04.1.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 2: Comparison of model results with observations. Global Planet. Change, 38, 3153, doi:10.1016/S0921-8181(03)00004-3.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , and Gulden L. E. , 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110, D21106, doi:10.1029/2005JD006111.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

  • Pierce, D. W., Westerling A. L. , and Oyler J. , 2013: Future humidity trends over the western United States in the CMIP5 global climate models and Variable Infiltration Capacity hydrological modeling system. Hydrol. Earth Syst. Sci., 17, 18331850, doi:10.5194/hess-17-1833-2013.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., Cayan D. R. , and Thrasher B. L. , 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, doi:10.1175/JHM-D-14-0082.1.

    • Search Google Scholar
    • Export Citation
  • Poulin, A., Brissette F. , Leconte R. , Arsenault R. , and Malo J.-S. , 2011: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol., 409, 626636, doi:10.1016/j.jhydrol.2011.08.057.

    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., Rajagopalan B. , Clark M. , and Pitlick J. , 2005: Seasonal cycle shifts in hydroclimatology over the western United States. J. Climate, 18, 372384, doi:10.1175/JCLI-3272.1.

    • Search Google Scholar
    • Export Citation
  • Risley, J., Moradkhani H. , Hay L. , and Markstrom S. , 2011: Statistical comparisons of watershed-scale response to climate change in selected basins across the United States. Earth Interact., 15, doi:10.1175/2010EI364.1.

    • Search Google Scholar
    • Export Citation
  • Sagarika, S., Kalra A. , and Ahmad S. , 2014: Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J. Hydrol., 517, 3653, doi:10.1016/j.jhydrol.2014.05.002.

    • Search Google Scholar
    • Export Citation
  • Samaniego, L., Kumar R. , and Attinger S. , 2010: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, doi:10.1029/2008WR007327.

    • Search Google Scholar
    • Export Citation
  • Sharma, D., and Babel M. , 2013: Application of downscaled precipitation for hydrological climate-change impact assessment in the upper Ping River basin of Thailand. Climate Dyn., 41, 25892602, doi:10.1007/s00382-013-1788-7.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , Wen F. , and Wood E. F. , 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24108, doi:10.1029/2004JD005182.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Livneh B. , and Wood E. F. , 2012: Representation of terrestrial hydrology and large-scale drought of the continental United States from the North American Regional Reanalysis. J. Hydrometeor., 13, 856876, doi:10.1175/JHM-D-11-065.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., Cayan D. R. , and Dettinger M. D. , 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155, doi:10.1175/JCLI3321.1.

    • Search Google Scholar
    • Export Citation
  • Stoner, A. M. K., Hayhoe K. , Yang X. , and Wuebbles D. J. , 2013: An asynchronous regional regression model for statistical downscaling of daily climate variables. Int. J. Climatol., 33, 24732494, doi:10.1002/joc.3603.

    • Search Google Scholar
    • Export Citation
  • Surfleet, C. G., Tullos D. , Chang H. , and Jung I.-W. , 2012: Selection of hydrologic modeling approaches for climate change assessment: A comparison of model scale and structures. J. Hydrol., 464–465, 233248, doi:10.1016/j.jhydrol.2012.07.012.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., Stouffer R. J. , and Meehl G. A. , 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., Wetterhall F. , and Seibert J. , 2011: Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dyn., 37, 20872105, doi:10.1007/s00382-010-0979-8.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93, 211228, doi:10.1016/S0168-1923(98)00126-9.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Hasenauer H. , and White M. A. , 2000: Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agric. For. Meteor., 104, 255271, doi:10.1016/S0168-1923(00)00170-2.

    • Search Google Scholar
    • Export Citation
  • Thrasher, B., Maurer E. P. , McKellar C. , and Duffy P. B. , 2012: Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci., 16, 33093314, doi:10.5194/hess-16-3309-2012.

    • Search Google Scholar
    • Export Citation
  • U.S. Bureau of Reclamation, 2011: West-wide climate risk assessments: Bias-corrected and spatially downscaled surface water projections. Tech. Memo. 86-68210-2011-01, 138 pp. [Available online at http://www.usbr.gov/watersmart/docs/west-wide-climate-risk-assessments.pdf.]

  • Vano, J. A., Das T. , and Lettenmaier D. P. , 2012: Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J. Hydrometeor., 13, 932–949, doi:10.1175/JHM-D-11-069.1.

    • Search Google Scholar
    • Export Citation
  • Vano, J. A., and Coauthors, 2014: Understanding uncertainties in future Colorado River streamflow. Bull. Amer. Meteor. Soc., 95, 5978, doi:10.1175/BAMS-D-12-00228.1.

    • Search Google Scholar
    • Export Citation
  • Viger, R. J., 2014: Preliminary spatial parameters for PRMS based on the Geospatial Fabric, NLCD2001 and SSURGO. U.S. Geological Survey, accessed 9 November 2015, doi:10.5066/F7WM1BF7.

  • Viger, R. J., Hay L. E. , Markstrom S. L. , Jones J. W. , and Buell G. R. , 2011: Hydrologic effects of urbanization and climate change on the Flint River basin, Georgia. Earth Interact., 15, doi:10.1175/2010EI369.1.

    • Search Google Scholar
    • Export Citation
  • Walker, J. F., Hay L. E. , Markstrom S. L. , and Dettinger M. D. , 2011: Characterizing climate-change impacts on the 1.5-yr flood flow in selected basins across the United States: A probabilistic approach. Earth Interact., 15, doi:10.1175/2010EI379.1.

    • Search Google Scholar
    • Export Citation
  • Wayand, N. E., Hamlet A. F. , Hughes M. , Feld S. I. , and Lundquist J. D. , 2013: Intercomparison of meteorological forcing data from empirical and mesoscale model sources in the North Fork American River basin in northern Sierra Nevada, California. J. Hydrometeor., 14, 677699, doi:10.1175/JHM-D-12-0102.1.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Hassan H. , and Hanaki K. , 1998: Statistical downscaling of hydrometeorological variables using general circulation model output. J. Hydrol., 205, 119, doi:10.1016/S0022-1694(97)00130-3.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Hay L. E. , Gutowski W. J. Jr., Arritt R. W. , Takle E. S. , Pan Z. , Leavesley G. H. , and Clark M. P. , 2000: Hydrological responses to dynamically and statistically downscaled climate model output. Geophys. Res. Lett., 27, 11991202, doi:10.1029/1999GL006078.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Charles S. P. , Zorita E. , Timbal B. , Whetton P. , and Mearns L. O. , 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC Doc., 27 pp. [Available online at http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf.]

  • Wood, A. W., Leung L. R. , Sridhar V. , and Lettenmaier D. P. , 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1013 517 17
PDF Downloads 504 111 5