Streamflow Hydrograph Classification Using Functional Data Analysis

Camille Ternynck Institute Center for Water and Environment, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates, and Laboratoire LEM, Maison de la Recherche, Domaine Universitaire du Pont de Bois, University of Lille, Villeneuve-d’Ascq, France

Search for other papers by Camille Ternynck in
Current site
Google Scholar
PubMed
Close
,
Mohamed Ali Ben Alaya Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Quebec, Canada

Search for other papers by Mohamed Ali Ben Alaya in
Current site
Google Scholar
PubMed
Close
,
Fateh Chebana Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Quebec, Canada

Search for other papers by Fateh Chebana in
Current site
Google Scholar
PubMed
Close
,
Sophie Dabo-Niang Laboratoire LEM, Maison de la Recherche, Domaine Universitaire du Pont de Bois, and Modal Team INRIA, University of Lille, Villeneuve-d’Ascq, France

Search for other papers by Sophie Dabo-Niang in
Current site
Google Scholar
PubMed
Close
, and
Taha B. M. J. Ouarda Institute Center for Water and Environment, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates, and Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec, Quebec, Canada

Search for other papers by Taha B. M. J. Ouarda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Classification of streamflow hydrographs plays an important role in a large number of hydrological and hydraulic studies. For instance, it allows decisions to be made regarding the implementation of hydraulic structures and characterization of different flood types, leading to a better understanding of extreme flow behavior. The employed hydrograph classification methods are generally based on a finite number of hydrograph characteristics and do not include all the available information contained in a discharge time series. In this paper, two statistical techniques from the theory of functional data classification are adapted and applied for the analysis of flood hydrographs. Functional classification directly employs all data of a discharge time series and thus contains all available information on shape, peak, and timing. This potentially allows a better understanding and treatment of floods as well as other hydrological phenomena. The considered functional methodology is applied to streamflow datasets from the province of Quebec, Canada. It is shown that classes obtained using functional approaches have merit and can lead to better representation than those obtained using a multidimensional hierarchical classification method. The considered methodology has the advantage of using all of the information contained in the hydrograph, thus reducing the subjectivity that is inherent in multidimensional analysis of the type and number of characteristics to be used and consequently diminishing the associated uncertainty.

Corresponding author address: Camille Ternynck, Institute Center for Water and Environment, Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates. E-mail: ternynck.camille@gmail.com

Abstract

Classification of streamflow hydrographs plays an important role in a large number of hydrological and hydraulic studies. For instance, it allows decisions to be made regarding the implementation of hydraulic structures and characterization of different flood types, leading to a better understanding of extreme flow behavior. The employed hydrograph classification methods are generally based on a finite number of hydrograph characteristics and do not include all the available information contained in a discharge time series. In this paper, two statistical techniques from the theory of functional data classification are adapted and applied for the analysis of flood hydrographs. Functional classification directly employs all data of a discharge time series and thus contains all available information on shape, peak, and timing. This potentially allows a better understanding and treatment of floods as well as other hydrological phenomena. The considered functional methodology is applied to streamflow datasets from the province of Quebec, Canada. It is shown that classes obtained using functional approaches have merit and can lead to better representation than those obtained using a multidimensional hierarchical classification method. The considered methodology has the advantage of using all of the information contained in the hydrograph, thus reducing the subjectivity that is inherent in multidimensional analysis of the type and number of characteristics to be used and consequently diminishing the associated uncertainty.

Corresponding author address: Camille Ternynck, Institute Center for Water and Environment, Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates. E-mail: ternynck.camille@gmail.com
Save
  • Abraham, C., Cornillon P. A. , Matzner-Løber E. , and Molinari N. , 2003: Unsupervised curve clustering using B-splines. Scand. J. Stat., 30, 581595, doi:10.1111/1467-9469.00350.

    • Search Google Scholar
    • Export Citation
  • Andrews, J. L., and McNicholas P. D. , 2014: Variable selection for clustering and classification. J. Classif., 31, 136153, doi:10.1007/s00357-013-9139-2.

    • Search Google Scholar
    • Export Citation
  • Assani, A. A., and Tardif S. , 2005: Classification, caractérisation et facteurs de variabilité spatiale des régimes hydrologiques naturels au Québec (Canada): Approche éco-géographique. Rev. Sci. Eau, 18 (2), 247266, doi:10.7202/705559ar.

    • Search Google Scholar
    • Export Citation
  • Auder, B., and Fischer A. , 2012: Projection-based curve clustering. J. Stat. Comput. Simul., 82, 11451168, doi:10.1080/00949655.2011.572882.

    • Search Google Scholar
    • Export Citation
  • Banerjee, A., Merugu S. , Dhillon I. S. , and Ghosh J. , 2005: Clustering with Bregman divergences. J. Mach. Learn. Res., 6, 17051749.

  • Belmar, O., Velasco J. , and Martinez-Capel F. , 2011: Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River basin (Spain). Environ. Manage., 47, 9921004, doi:10.1007/s00267-011-9661-0.

    • Search Google Scholar
    • Export Citation
  • Bower, D., Hannah D. M. , and McGregor G. R. , 2004: Techniques for assessing the climatic sensitivity of river flow regimes. Hydrol. Processes, 18, 25152543, doi:10.1002/hyp.1479.

    • Search Google Scholar
    • Export Citation
  • Bregman, L. M., 1967: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys., 7, 200217, doi:10.1016/0041-5553(67)90040-7.

    • Search Google Scholar
    • Export Citation
  • Cadre, B., and Paris Q. , 2012: On Hölder fields clustering. Test, 21, 301316, doi:10.1007/s11749-011-0244-4.

  • Chebana, F., and Ouarda T. B. M. J. , 2011: Multivariate quantiles in hydrological frequency analysis. Environmetrics, 22, 6378, doi:10.1002/env.1027.

    • Search Google Scholar
    • Export Citation
  • Chebana, F., Dabo-Niang S. , and Ouarda T. B. M. J. , 2012: Exploratory functional flood frequency analysis and outlier detection. Water Resour.Res., 48, W04514, doi:10.1029/2011WR011040.

  • Cuevas, A., Febrero M. , and Fraiman R. , 2006: On the use of the bootstrap for estimating functions with functional data. Comput. Stat. Data Anal., 51, 10631074, doi:10.1016/j.csda.2005.10.012.

    • Search Google Scholar
    • Export Citation
  • Cullen, H. M., Kaplan A. , Arkin P. A. , and deMenocal P. B. , 2002: Impact of the North Atlantic Oscillation on Middle Eastern climate and streamflow. Climatic Change, 55, 315338, doi:10.1023/A:1020518305517.

    • Search Google Scholar
    • Export Citation
  • Dabo-Niang, S., Ferraty F. , and Vieu P. , 2006: Mode estimation for functional random variable and its application for curves classification. Far East J. Theor. Stat., 18 (1), 93119.

    • Search Google Scholar
    • Export Citation
  • Dabo-Niang, S., Ferraty F. , and Vieu P. , 2007: On the using of modal curves for radar waveforms classification. Comput. Stat. Data Anal., 51, 48784890, doi:10.1016/j.csda.2006.07.012.

    • Search Google Scholar
    • Export Citation
  • Febrero, M., Galeano P. , and Gonzalez-Manteiga W. , 2008: Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels. Environmetrics, 19, 331345, doi:10.1002/env.878.

    • Search Google Scholar
    • Export Citation
  • Ferraty, F., and Vieu P. , 2006: Nonparametric Functional Data Analysis: Theory and Practice. Springer-Verlag, 260 pp.

  • Fischer, A., 2010: Quantization and clustering with Bregman divergences. J. Multivariate Anal., 101, 22072221, doi:10.1016/j.jmva.2010.05.008.

    • Search Google Scholar
    • Export Citation
  • Fraiman, R., and Muniz G. , 2001: Trimmed means for functional data. Test, 10, 419440, doi:10.1007/BF02595706.

  • Fraiman, R., Justel A. , and Svarc M. , 2008: Selection of variables for cluster analysis and classification rules. J. Amer. Stat. Assoc., 103, 12941303, doi:10.1198/016214508000000544.

    • Search Google Scholar
    • Export Citation
  • Ganora, D., Claps P. , Laio F. , and Viglione A. , 2009: An approach to estimate nonparametric flow duration curves in ungauged basins. Water Resour. Res., 45, W10418, doi:10.1029/2008WR007472.

    • Search Google Scholar
    • Export Citation
  • Graves, S., Hooker G. , and Ramsay J. , 2009: Functional Data Analysis with R and MATLAB. Springer, 202 pp.

  • Hannah, D. M., Smith B. P. G. , Gurnell A. M. , and McGregor G. R. , 2000: An approach to hydrograph classification. Hydrol. Processes, 14, 317338, doi:10.1002/(SICI)1099-1085(20000215)14:2<317::AID-HYP929>3.0.CO;2-T.

    • Search Google Scholar
    • Export Citation
  • Harris, N. M., Gurnell A. M. , Hannah D. M. , and Petts G. E. , 2000: Classification of river regimes: A context for hydroecology. Hydrol. Processes, 14, 28312848, doi:10.1002/1099-1085(200011/12)14:16/17<2831::AID-HYP122>3.0.CO;2-O.

    • Search Google Scholar
    • Export Citation
  • Hartigan, J. A., 1975: Cluster Algorithms. Wiley, 351 pp.

  • Hurrell, J. W., and Van Loon H. , 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36, 301326, doi:10.1023/A:1005314315270.

    • Search Google Scholar
    • Export Citation
  • Hyndman, R. J., and Shang H. L. , 2010: Rainbow plots, bagplots, and boxplots for functional data. J. Comput. Graph. Stat., 19, 2945, doi:10.1198/jcgs.2009.08158.

    • Search Google Scholar
    • Export Citation
  • James, G. M., and Sugar C. A. , 2003: Clustering for sparsely sampled functional data. J. Amer. Stat. Assoc., 98, 397408, doi:10.1198/016214503000189.

    • Search Google Scholar
    • Export Citation
  • Kaufman, L., and Rousseeuw P. , 1990: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, 342 pp.

  • Khan, S. S., and Ahmad A. , 2004: Cluster center initialization algorithm for K-means clustering. Pattern Recognit. Lett., 25, 12931302, doi:10.1016/j.patrec.2004.04.007.

    • Search Google Scholar
    • Export Citation
  • Kingston, D. G., Thompson J. R. , and Kite G. , 2011: Uncertainty in climate change projections of discharge for the Mekong River basin. Hydrol. Earth Syst. Sci., 15, 14591471, doi:10.5194/hess-15-1459-2011.

    • Search Google Scholar
    • Export Citation
  • Krzanowski, W. J., and Lai Y. T. , 1988: A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics, 44, 2334, doi:10.2307/2531893.

    • Search Google Scholar
    • Export Citation
  • Milligan, G. W., and Cooper M. C. , 1985: An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159179, doi:10.1007/BF02294245.

    • Search Google Scholar
    • Export Citation
  • Modarres, R., and Ouarda T. B. M. J. , 2013: Testing and modelling the volatility change in ENSO. Atmos.–Ocean, 51, 561570, doi:10.1080/07055900.2013.843054.

    • Search Google Scholar
    • Export Citation
  • Nazemosadat, M. J., Samani N. , Barry D. A. , and Molaii Niko M. , 2006: ENSO forcing on climate change in Iran: Precipitation analysis. Indian J. Sci. Technol., 30 (B4), 555565.

    • Search Google Scholar
    • Export Citation
  • Ouachani, R., Bargaoui Z. , and Ouarda T. B. M. J. , 2013: Power of teleconnection patterns on precipitation and streamflow variability of upper Medjerda basin. Int. J. Climatol., 33, 5876, doi:10.1002/joc.3407.

    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., Rasmussen P. F. , Cantin J. F. , Bobée B. , Laurence R. , and Hoang V. D. , 1999: Identification d’un réseau hydrométrique pour le suivi des modifications climatiques dans la province de Québec. Rev. Sci. Eau, 12, 425448, doi:10.7202/705359ar.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., and Beven K. J. , 2004: Functional classification and evaluation of hydrographs based on multicomponent mapping (Mx). Int. J. River Basin Manage., 2, 89100, doi:10.1080/15715124.2004.9635224.

    • Search Google Scholar
    • Export Citation
  • Ramsay, J. O., and Silverman B. W. , 2005: Functional Data Analysis. 2nd ed. Springer, 428 pp.

  • Richter, B. D., Baumgartner J. V. , Powell J. , and Braun D. P. , 1996: A method for assessing hydrologic alteration within ecosystems. Conserv. Biol., 10, 11631174, doi:10.1046/j.1523-1739.1996.10041163.x.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J. Climate, 10, 16351647, doi:10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weijs, S. V., van de Giesen N. , and Parlange M. B. , 2013: Data compression to define information content of hydrological time series. Hydrol. Earth Syst. Sci., 17, 31713187, doi:10.5194/hess-17-3171-2013.

    • Search Google Scholar
    • Export Citation
  • Yue, S., Ouarda T. B. M. J. , Bobée B. , Legendre P. , and Bruneau P. , 2002: Approach for describing statistical properties of flood hydrograph. J. Hydrol. Eng., 7, 147153, doi:10.1061/(ASCE)1084-0699(2002)7:2(147).

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2377 835 72
PDF Downloads 1276 226 30