Impact of Source Region on the δ 18O Signal in Snow: A Case Study from Mount Wrangell, Alaska

G. W. K. Moore Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by G. W. K. Moore in
Current site
Google Scholar
PubMed
Close
,
Robert D. Field Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Robert D. Field in
Current site
Google Scholar
PubMed
Close
, and
Carl S. Benson Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Carl S. Benson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The stable isotopic composition of water in ice cores is an important source of information on past climate variability. At its simplest level, the underlying assumption is that there is an empirical relationship between the normalized difference in the concentration for these stable isotopes and a specified local temperature at the ice core site. There are, however, nonlocal processes, such as a change in source region or a change in the atmospheric pathway, which can impact the stable isotope signal, thereby complicating its use as a proxy for temperature. In this paper, the importance of these nonlocal processes are investigated through the analysis of the synoptic-scale circulation during a snowfall event at the summit of Mount Wrangell (62°N, 144°W; 4300 m MSL) in south-central Alaska. During this event there was, over a 1-day period in which the local temperature was approximately constant, a change in δ18O that exceeded half that normally seen to occur in the region between summer and winter. As shall be shown, this arose from a change in the source region, from the subtropical eastern Pacific to northeastern Asia, for the snow that fell on Mount Wrangell during the event.

Current affiliation: Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Sciences, New York, New York.

Corresponding author address: G. W. K. Moore, Department of Physics, University of Toronto, 60 St. George Street, Toronto ON M5S 1A7, Canada. E-mail: gwk.moore@utoronto.ca

Abstract

The stable isotopic composition of water in ice cores is an important source of information on past climate variability. At its simplest level, the underlying assumption is that there is an empirical relationship between the normalized difference in the concentration for these stable isotopes and a specified local temperature at the ice core site. There are, however, nonlocal processes, such as a change in source region or a change in the atmospheric pathway, which can impact the stable isotope signal, thereby complicating its use as a proxy for temperature. In this paper, the importance of these nonlocal processes are investigated through the analysis of the synoptic-scale circulation during a snowfall event at the summit of Mount Wrangell (62°N, 144°W; 4300 m MSL) in south-central Alaska. During this event there was, over a 1-day period in which the local temperature was approximately constant, a change in δ18O that exceeded half that normally seen to occur in the region between summer and winter. As shall be shown, this arose from a change in the source region, from the subtropical eastern Pacific to northeastern Asia, for the snow that fell on Mount Wrangell during the event.

Current affiliation: Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Sciences, New York, New York.

Corresponding author address: G. W. K. Moore, Department of Physics, University of Toronto, 60 St. George Street, Toronto ON M5S 1A7, Canada. E-mail: gwk.moore@utoronto.ca
Save
  • Araguás-Araguás, L., Froehlich K. , and Rozanski K. , 2000: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Processes, 14, 13411355, doi:10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Livezey R. E. , 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benson, C. S., 1962: Stratigraphic studies in the snow and firn of the Greenland ice sheet. Research Rep. 70, U.S. Army Corps of Engineers, 182 pp. [Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA337542.]

  • Blackmon, M. L., 1976: Climatological spectral study of 500 mb geopotential height of Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyle, E. A., 1997: Cool tropical temperatures shift the global δ18O–T relationship: An explanation for the ice core δ18O–borehole thermometry conflict? Geophys. Res. Lett., 24, 273276, doi:10.1029/97GL00081.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., Vuille M. , Hardy D. , and Thompson L. G. , 2003: Low latitude ice cores record Pacific sea surface temperatures. Geophys. Res. Lett., 30, 1174, doi:10.1029/2002GL016546.

    • Search Google Scholar
    • Export Citation
  • Burnett, A. W., Mullins H. T. , and Patterson W. P. , 2004: Relationship between atmospheric circulation and winter precipitation δ18O in central New York State. Geophys. Res. Lett., 31, L22209, doi:10.1029/2004GL021089.

    • Search Google Scholar
    • Export Citation
  • Clark, I. D., and Fritz P. , 1997: Environmental Isotopes in Hydrogeology. CRC Press, 328 pp.

  • Cole, J. E., Rind D. , Webb R. S. , Jouzel J. , and Healy R. , 1999: Climatic controls on interannual variability of precipitation δ18O: Simulated influence of temperature, precipitation amount, and vapor source region. J. Geophys. Res., 104, 14 22314 235, doi:10.1029/1999JD900182.

    • Search Google Scholar
    • Export Citation
  • Coplen, T. B., De Bievre P. , Krouse H. R. , Vocke R. D. , Groning M. , and Rozanski K. , 1996: Ratios for light-element isotopes standardized for better interlaboratory comparison. Eos, Trans. Amer. Geophys. Union, 77, 255, doi:10.1029/96EO00182.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., Clow G. D. , Alley R. B. , Stuiver M. , Waddington E. D. , and Saltus R. W. , 1995: Large arctic temperature-change at the Wisconsin-Holocene glacial transition. Science, 270, 455458, doi:10.1126/science.270.5235.455.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16A, 436468, doi:10.1111/j.2153-3490.1964.tb00181.x.

  • Draxler, R. R., and Hess G. D. , 1998: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Epstein, S., and Mayeda T. , 1953: Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta, 4, 213224, doi:10.1016/0016-7037(53)90051-9.

    • Search Google Scholar
    • Export Citation
  • Field, R. D., Moore G. W. K. , Holdsworth G. , and Schmidt G. A. , 2010: A GCM-based analysis of circulation controls on δ18O in the southwest Yukon, Canada: Implications for climate reconstructions in the region. Geophys. Res. Lett., 37, L05706, doi:10.1029/2009GL041408.

    • Search Google Scholar
    • Export Citation
  • Fisher, D., Wake C. , Kreutz K. , Yalcin K. , and Steig E. , 2004: Stable isotope records from Mount Logan and Eclipse ice cores and nearby Jellybean Lake; water cycle of the North Pacific over 2000 years and over 5 vertical kilometres; sudden shifts and tropical connections. Geogr. Phys. Quat., 58, 337352.

    • Search Google Scholar
    • Export Citation
  • Gat, J. R., 1996: Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci., 24, 225262, doi:10.1146/annurev.earth.24.1.225.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., and Lawrence J. R. , 1982: The isotopic composition of cyclonic precipitation. J. Appl. Meteor., 21, 13851404, doi:10.1175/1520-0450(1982)021<1385:TICOCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., and Lawrence J. R. , 1990: The isotopic composition of precipitation from two extratropical cyclones. Mon. Wea. Rev., 118, 495509, doi:10.1175/1520-0493(1990)118<0495:TICOPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., Rosenbaum J. M. , and Lawrence J. R. , 1989: The megalopolitan snowstorm of 11–12 February 1983: Isotopic composition of the snow. J. Atmos. Sci., 46, 16371649, doi:10.1175/1520-0469(1989)046<1637:TMSOFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and Barnett T. P. , 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152725, doi:10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guirguis, K. J., and Avissar R. , 2008: A precipitation climatology and dataset intercomparison for the western United States. J. Hydrometeor., 9, 825841, doi:10.1175/2008JHM832.1.

    • Search Google Scholar
    • Export Citation
  • Helsen, M. M., Van de Wal R. S. W. , and Van den Broeke M. R. , 2007: The isotopic composition of present-day Antarctic snow in a Lagrangian atmospheric simulation. J. Climate, 20, 739756, doi:10.1175/JCLI4027.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, M. B., DePaolo D. J. , and Cohen R. C. , 2000: Space and time variation of δ18O and δD in precipitation: Can paleotemperature be estimated from ice cores? Global Biogeochem. Cycles, 14, 851861, doi:10.1029/1999GB001198.

    • Search Google Scholar
    • Export Citation
  • Holdsworth, G., 2001: Calibration changes in the isotopic thermometer for snow according to different climatic states. Geophys. Res. Lett., 28, 26252628, doi:10.1029/2000GL011999.

    • Search Google Scholar
    • Export Citation
  • Holdsworth, G., Fogarasi S. , and Krouse H. R. , 1991: Variation of the stable isotopes of water with altitude in the Saint Elias Mountains of Canada. J. Geophys. Res., 96, 74837494, doi:10.1029/91JD00048.

    • Search Google Scholar
    • Export Citation
  • Holdsworth, G., Krouse H. R. , and Nosal M. , 1992: Ice core climate signals from Mount Logan, Yukon, 1700–1987. Climate since A.D. 1500, R. S. Bradley, and P. D. Jones, Eds., Routledge, 483–504.

  • Horel, J. D., and Wallace J. M. , 1981: Planetary scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and Hodges K. I. , 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IAEA/WMO, 2006: Global Network of Isotopes in Precipitation (GNIP). IAEA/WMO, accessed October 2009. [Available online at http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html.]

  • Johnsen, S. J., Dansgaard W. , and White J. W. C. , 1989: The origin of Arctic precipitation under present and glacial conditions. Tellus, 41B, 452468, doi:10.1111/j.1600-0889.1989.tb00321.x.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Koster R. D. , 1996: A reconsideration of the initial conditions used for stable water isotope models. J. Geophys. Res., 101, 22 93322 938, doi:10.1029/96JD02362.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., Lorius C. , Petit J. R. , Genthon C. , Barkov N. I. , Kotlyakov V. M. , and Petrov V. M. , 1987: Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature, 329, 403408, doi:10.1038/329403a0.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 1997: Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res., 102, 26 47126 487, doi:10.1029/97JC01283.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S. K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kanamori, S., Benson C. S. , Truffer M. , Matoba S. , Solie D. J. , and Shiraiwa T. , 2008: Seasonality of snow accumulation at Mount Wrangell, Alaska, USA. J. Glaciol., 54, 273278, doi:10.3189/002214308784886081.

    • Search Google Scholar
    • Export Citation
  • Kavanaugh, J. L., and Cuffey K. M. , 2002: Generalized view of source-region effects on δD and deuterium excess of ice-sheet precipitation. Ann. Glaciol., 35, 111117, doi:10.3189/172756402781816960.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Werner M. , 2003: Impact of precipitation seasonality changes on isotopic signals in polar ice cores: A multi-model analysis. Earth Planet. Sci. Lett., 216, 525538, doi:10.1016/S0012-821X(03)00550-8.

    • Search Google Scholar
    • Export Citation
  • Kurita, N., Yoshida N. , Inoue G. , and Chayanova E. A. , 2004: Modern isotope climatology of Russia: A first assessment. J. Geophys. Res., 109, D03102, doi:10.1029/2003JD003404.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., Gyakum J. R. , and Benoit R. , 1998: Moisture transport diagnosis of a wintertime precipitation event in the Mackenzie River basin. Mon. Wea. Rev., 126, 668691, doi:10.1175/1520-0493(1998)126<0668:MTDOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, J. R., Gedzelman S. D. , White J. W. C. , Smiley D. , and Lazov P. , 1982: Storm trajectories in eastern US D/H isotopic composition of precipitation. Nature, 296, 638640, doi:10.1038/296638a0.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and Holdsworth G. , 2007: The 25–27 May 2005 Mount Logan storm. Part I: Observations and synoptic overview. J. Hydrometeor., 8, 590606, doi:10.1175/JHM586.1.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., Holdsworth G. , and Alverson K. , 2001: Extra-tropical response to ENSO as expressed in an ice core from the Saint Elias Mountain Range. Geophys. Res. Lett., 28, 34573460, doi:10.1029/2000GL012397.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., Alverson K. , and Holdsworth G. , 2002a: Variability in the climate of the Pacific Ocean and North America as expressed in the Mount Logan ice core. Ann. Glaciol., 35, 423–429, doi:10.3189/172756402781817185.

  • Moore, G. W. K., Holdsworth G. , and Alverson K. , 2002b: Climate change in the North Pacific region over the past three centuries. Nature, 420, 401403, doi:10.1038/nature01229.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., Alverson K. , and Holdsworth G. , 2004: Mount Logan ice core evidence for secular changes in the Hadley and Walker Circulations following the end of the Little Ice Age. The Hadley Circulation: Past, Present and Future, H. F. Diaz and R. Bradley, Eds., Kluwer, 371–395.

  • Noone, D., and Simmonds I. , 2002: Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979–95. J. Climate, 15, 31503169, doi:10.1175/1520-0442(2002)015<3150:ABOOWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and Oort A. H. , 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436, doi:10.1038/20859.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., Wernli H. , and Yoshimura K. , 2012: The isotopic composition of precipitation from a winter storm—A case study with the limited-area model COSMOiso. Atmos. Chem. Phys., 12, 16291648, doi:10.5194/acp-12-1629-2012.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rozanski, K., Sonntag C. , and Munnich K. O. , 1982: Factors controlling stable isotope composition of European precipitation. Tellus, 34A, 142150, doi:10.1111/j.2153-3490.1982.tb01801.x.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192, doi:10.1175/JCLI3612.1.

    • Search Google Scholar
    • Export Citation
  • Smirnov, V. V., and Moore G. W. K. , 1999: Spatial and temporal structure of atmospheric water vapor transport in the Mackenzie River basin. J. Climate, 12, 681696, doi:10.1175/1520-0442(1999)012<0681:SATSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smirnov, V. V., and Moore G. W. K. , 2001: Short-term and seasonal variability of the atmospheric water vapor transport through the Mackenzie River basin. J. Hydrometeor., 2, 441452, doi:10.1175/1525-7541(2001)002<0441:STASVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., Masson-Delmotte V. , Schwierz C. , Vinther B. M. , and Wernli H. , 2008: Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation. J. Geophys. Res., 113, D12111, doi:10.1029/2007JD009416.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., and Coauthors, 1998: The Mackenzie GEWEX study: The water and energy cycles of a major North American river basin. Bull. Amer. Meteor. Soc., 79, 26652683, doi:10.1175/1520-0477(1998)079<2665:TMGSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., Tran H. , Mackay M. D. , and Crawford R. , 2008: The MAGS water and energy budget study. J. Hydrometeor., 9, 96115, doi:10.1175/2007JHM810.1.

    • Search Google Scholar
    • Export Citation
  • Treble, P. C., Budd W. F. , Hope P. K. , and Rustomji P. K. , 2005: Synoptic-scale climate patterns associated with rainfall δ18O in southern Australia. J. Hydrol., 302, 270282, doi:10.1016/j.jhydrol.2004.07.003.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Brantstator G. W. , Karoly D. , Kumar A. , Lau N.-C. , and Ropelewski C. , 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Wake, C. P., Yalcin K. , and Gundestrup N. S. , 2001: The climate signal recorded in the oxygen-isotope, accumulation and major-ion time series from the Eclipse ice core, Yukon Territory, Canada. Ann. Glaciol., 35, 416422.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and Gutzler D. S. , 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Werner, M., Mikolajewicz U. , Heimann M. , and Hoffmann G. , 2000: Borehole versus isotope temperatures on Greenland: Seasonality does matter. Geophys. Res. Lett., 27, 723726, doi:10.1029/1999GL006075.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T. J., Shiraiwa T. , Kanamori S. , Fujii Y. , Igarashi M. , Yamazaki K. , Benson C. S. , and Hondoh T. , 2007: Intra-annual variations in atmospheric dust and tritium in the North Pacific region detected from an ice core from Mount Wrangell, Alaska. J. Geophys. Res., 112, D10208, doi:10.1029/2006JD008121.

    • Search Google Scholar
    • Export Citation
  • Zagorodnov, V., Thompson L. G. , Ginot P. , and Mikhalenk V. , 2005: Intermediate-depth ice coring of high-altitude and polar glaciers with a lightweight drilling system. J. Glaciol., 51, 491501, doi:10.3189/172756505781829269.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 112 22
PDF Downloads 111 28 1