How Does Availability of Meteorological Forcing Data Impact Physically Based Snowpack Simulations?

Mark S. Raleigh National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Mark S. Raleigh in
Current site
Google Scholar
PubMed
Close
,
Ben Livneh Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Ben Livneh in
Current site
Google Scholar
PubMed
Close
,
Karl Lapo Atmospheric Sciences Department, University of Washington, Seattle, Washington

Search for other papers by Karl Lapo in
Current site
Google Scholar
PubMed
Close
, and
Jessica D. Lundquist Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Jessica D. Lundquist in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Physically based models facilitate understanding of seasonal snow processes but require meteorological forcing data beyond air temperature and precipitation (e.g., wind, humidity, shortwave radiation, and longwave radiation) that are typically unavailable at automatic weather stations (AWSs) and instead are often represented with empirical estimates. Research is needed to understand which forcings (after temperature and precipitation) would most benefit snow modeling through expanded observation or improved estimation techniques. Here, the impact of forcing data availability on snow model output is assessed with data-withholding experiments using 3-yr datasets at well-instrumented sites in four climates. The interplay between forcing availability and model complexity is examined among the Utah Energy Balance (UEB), the Distributed Hydrology Soil Vegetation Model (DHSVM) snow submodel, and the snow thermal model (SNTHERM). Sixty-four unique forcing scenarios were evaluated, with different assumptions regarding availability of hourly meteorological observations at each site. Modeled snow water equivalent (SWE) and snow surface temperature Tsurf diverged most often because of availability of longwave radiation, which is the least frequently measured forcing in cold regions in the western United States. Availability of longwave radiation (i.e., observed vs empirically estimated) caused maximum SWE differences up to 234 mm (57% of peak SWE), mean differences up to 6.2°C in Tsurf, and up to 32 days difference in snow disappearance timing. From a model data perspective, more common observations of longwave radiation at AWSs could benefit snow model development and applications, but other aspects (e.g., costs, site access, and maintenance) need consideration.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0235.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Mark Raleigh, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: raleigh@ucar.edu

Abstract

Physically based models facilitate understanding of seasonal snow processes but require meteorological forcing data beyond air temperature and precipitation (e.g., wind, humidity, shortwave radiation, and longwave radiation) that are typically unavailable at automatic weather stations (AWSs) and instead are often represented with empirical estimates. Research is needed to understand which forcings (after temperature and precipitation) would most benefit snow modeling through expanded observation or improved estimation techniques. Here, the impact of forcing data availability on snow model output is assessed with data-withholding experiments using 3-yr datasets at well-instrumented sites in four climates. The interplay between forcing availability and model complexity is examined among the Utah Energy Balance (UEB), the Distributed Hydrology Soil Vegetation Model (DHSVM) snow submodel, and the snow thermal model (SNTHERM). Sixty-four unique forcing scenarios were evaluated, with different assumptions regarding availability of hourly meteorological observations at each site. Modeled snow water equivalent (SWE) and snow surface temperature Tsurf diverged most often because of availability of longwave radiation, which is the least frequently measured forcing in cold regions in the western United States. Availability of longwave radiation (i.e., observed vs empirically estimated) caused maximum SWE differences up to 234 mm (57% of peak SWE), mean differences up to 6.2°C in Tsurf, and up to 32 days difference in snow disappearance timing. From a model data perspective, more common observations of longwave radiation at AWSs could benefit snow model development and applications, but other aspects (e.g., costs, site access, and maintenance) need consideration.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0235.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Mark Raleigh, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: raleigh@ucar.edu

Supplementary Materials

    • Supplemental Materials (DOC 446.00 KB)
Save
  • Augustine, J. A., DeLuisi J. J. , and Long C. N. , 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 23412357, doi:10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bales, R. C., Molotch N. P. , Painter T. H. , Dettinger M. D. , Rice R. , and Dozier J. , 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Search Google Scholar
    • Export Citation
  • Ball, R., Purcell L. , and Carey S. , 2004: Evaluation of solar radiation prediction models in North America. Agron. J., 96, 391397, doi:10.2134/agronj2004.0391.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Adam J. C. , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13, 21492175, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8.

    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., Livneh B. , Oyler J. W. , Running S. W. , Nijssen B. , and Lettenmaier D. P. , 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, doi:10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Cesaraccio, C., Spano D. , Duce P. , and Snyder R. L. , 2001: An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol., 45, 161169, doi:10.1007/s004840100104.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2014a: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model inter-comparison study. J. Geophys. Res. Atmos., 119, 13 79513 819, doi:10.1002/2014JD022167.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Liu C. , Dudhia J. , and Chen M. , 2014b: A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States. J. Geophys. Res. Atmos., 119, 72717291, doi:10.1002/2014JD021827.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., Slater A. G. , Rupp D. E. , Woods R. A. , Vrugt J. A. , Gupta H. V. , Wagener T. , and Hay L. E. , 2008: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res., 44, W00B02, doi:10.1029/2007WR006735.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., Kavetski D. , and Fenicia F. , 2011: Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res., 47, W09301, doi:10.1029/2010WR009827.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2015a: A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res., 51, 24982514, doi:10.1002/2015WR017198.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2015b: A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resour. Res., 51, 25152542, doi:10.1002/2015WR017200.

    • Search Google Scholar
    • Export Citation
  • Crawford, T., and Duchon C. , 1999: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor., 38, 474480, doi:10.1175/1520-0450(1999)038<0474:AIPFEE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deems, J. S., Fassnacht S. R. , and Elder K. J. , 2006: Fractal distribution of snow depth from Lidar data. J. Hydrometeor., 7, 285297, doi:10.1175/JHM487.1.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R., Henderson-Sellers A. , and Kennedy P. , 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR-TN-387+STR, 72 pp., doi:10.5065/D67W6959.

  • Dilley, A., and O’Brien D. , 1998: Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Quart. J. Roy. Meteor. Soc., 124, 13911401, doi:10.1002/qj.49712454903.

    • Search Google Scholar
    • Export Citation
  • Dubayah, R., 1992: Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data. Water Resour. Res., 28, 24692484, doi:10.1029/92WR00772.

    • Search Google Scholar
    • Export Citation
  • Elsner, M. M., Gangopadhyay S. , Pruitt T. , Brekke L. D. , Mizukami N. , and Clark M. P. , 2014: How does the choice of distributed meteorological data affect hydrologic model calibration and streamflow simulations? J. Hydrometeor., 15, 13841403, doi:10.1175/JHM-D-13-083.1.

    • Search Google Scholar
    • Export Citation
  • Essery, R., Morin S. , Lejeune Y. , and Ménard C. B. , 2013: A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131148, doi:10.1016/j.advwatres.2012.07.013.

    • Search Google Scholar
    • Export Citation
  • Euskirchen, E. S., Bret-Harte M. S. , Scott G. J. , Edgar C. , and Shaver G. R. , 2012: Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere, 3, doi:10.1890/ES11-00202.1.

    • Search Google Scholar
    • Export Citation
  • Feld, S. I., Cristea N. C. , and Lundquist J. D. , 2013: Representing atmospheric moisture content along mountain slopes: Examination using distributed sensors in the Sierra Nevada, California. Water Resour. Res., 49, 44244441, doi:10.1002/wrcr.20318.

    • Search Google Scholar
    • Export Citation
  • Feng, X., Sahoo A. , Arsenault K. , Houser P. , Luo Y. , and Troy T. J. , 2008: The impact of snow model complexity at three CLPX sites. J. Hydrometeor., 9, 14641481, doi:10.1175/2008JHM860.1.

    • Search Google Scholar
    • Export Citation
  • Flerchinger, G. N., Xaio W. , Marks D. , Sauer T. J. , and Yu Q. , 2009: Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour. Res., 45, W03423, doi:10.1029/2008WR007394.

    • Search Google Scholar
    • Export Citation
  • Forman, B. A., and Margulis S. A. , 2009: High-resolution satellite-based cloud-coupled estimates of total downwelling surface radiation for hydrologic modelling applications. Hydrol. Earth Syst. Sci., 13, 969986, doi:10.5194/hess-13-969-2009.

    • Search Google Scholar
    • Export Citation
  • Förster, K., Meon G. , Marke T. , and Strasser U. , 2014: Effect of meteorological forcing and snow model complexity on hydrological simulations in the Sieber catchment (Harz Mountains, Germany). Hydrol. Earth Syst. Sci., 18, 47034720, doi:10.5194/hess-18-4703-2014.

    • Search Google Scholar
    • Export Citation
  • Groot Zwaaftink, C. D., Mott R. , and Lehning M. , 2013: Seasonal simulation of drifting snow sublimation in alpine terrain. Water Resour. Res., 49, 15811590, doi:10.1002/wrcr.20137.

    • Search Google Scholar
    • Export Citation
  • Gubler, S., Gruber S. , and Purves R. S. , 2012: Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation. Atmos. Chem. Phys., 12, 50775098, doi:10.5194/acp-12-5077-2012.

    • Search Google Scholar
    • Export Citation
  • Hawkins, T., Ellis A. , Skindlov J. , and Reigle D. , 2002: Intra-annual analysis of the North American snow cover–monsoon teleconnection: Seasonal forecasting utility. J. Climate, 15, 17431753, doi:10.1175/1520-0442(2002)015<1743:IAAOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., Cameron S. E. , Parra J. L. , Jones P. G. , and Jarvis A. , 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and Dong X. , 2010: An evaluation of the distribution of Remote Automated Weather Stations (RAWS). J. Appl. Meteor. Climatol., 49, 15631578, doi:10.1175/2010JAMC2397.1.

    • Search Google Scholar
    • Export Citation
  • Hungerford, R., Nemani R. , Running S. , and Coughlan J. , 1989: MTCLIM: A mountain microclimate simulation model. U.S. Forest Service Intermountain Research Station Research Paper INT-414, 52 pp. [Available online at http://www.fs.fed.us/rm/pubs_int/int_rp414.pdf]

  • Jabot, E., Zin I. , Lebel T. , Gautheron A. , and Obled C. , 2012: Spatial interpolation of sub-daily air temperatures for snow and hydrologic applications in mesoscale alpine catchments. Hydrol. Processes, 26, 26182630, doi:10.1002/hyp.9423.

    • Search Google Scholar
    • Export Citation
  • Jin, J., and Miller N. L. , 2007: Analysis of the impact of snow on daily weather variability in mountainous regions using MM5. J. Hydrometeor., 8, 245258, doi:10.1175/JHM565.1.

    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • Juszak, I., and Pellicciotti F. , 2013: A comparison of parameterizations of incoming longwave radiation over melting glaciers: Model robustness and seasonal variability. J. Geophys. Res. Atmos., 118, 30663084, doi:10.1002/jgrd.50277.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kane, D. L., Hinzman L. D. , Benson C. S. , and Liston G. E. , 1991: Snow hydrology of a headwater Arctic basin: 1. Physical measurements and process studies. Water Resour. Res., 27, 10991109, doi:10.1029/91WR00262.

    • Search Google Scholar
    • Export Citation
  • Kang, D. H., Shi X. , Gao H. , and Déry S. J. , 2014: On the changing contribution of snow to the hydrology of the Fraser River basin, Canada. J. Hydrometeor., 15, 13441365, doi:10.1175/JHM-D-13-0120.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, J., Running S. , and Nemani R. , 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor., 85, 8798, doi:10.1016/S0168-1923(96)02366-0.

    • Search Google Scholar
    • Export Citation
  • Kirchner, J. W., 2006: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res., 42, W03S04, doi:10.1029/2005WR004362.

    • Search Google Scholar
    • Export Citation
  • Koivusalo, H., and Heikinheimo M. , 1999: Surface energy exchange over a boreal snowpack: Comparison of two snow energy balance models. Hydrol. Processes, 13, 23952408, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2395::AID-HYP864>3.0.CO;2-G.

    • Search Google Scholar
    • Export Citation
  • Kudo, G., 1991: Effects of snow-free period on the phenology of alpine plants inhabiting snow patches. Arct. Alp. Res., 23, 436443, doi:10.2307/1551685.

    • Search Google Scholar
    • Export Citation
  • Landry, C. C., Buck K. A. , Raleigh M. S. , and Clark M. P. , 2014: Mountain system monitoring at Senator Beck basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res., 50, 17731788, doi:10.1002/2013WR013711.

    • Search Google Scholar
    • Export Citation
  • Lapo, K. E., Hinkelman L. M. , Raleigh M. S. , and Lundquist J. D. , 2015: Impact of errors in the downwelling irradiances on simulations of snow water equivalent, snow surface temperature, and the snow energy balance. Water Resour. Res., 51, 16491670, doi:10.1002/2014WR016259.

    • Search Google Scholar
    • Export Citation
  • Lehning, M., Bartelt P. , Brown B. , and Fierz C. , 2002: A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation. Cold Reg. Sci. Technol., 35, 169184, doi:10.1016/S0165-232X(02)00072-1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. , Wood E. , and Burges S. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liston, G., and Sturm M. , 1998: A snow-transport model for complex terrain. J. Glaciol., 44, 498516.

  • Livneh, B., Xia Y. , Mitchell K. E. , Ek M. B. , and Lettenmaier D. P. , 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738, doi:10.1175/2009JHM1174.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Rosenberg E. A. , Lin C. , Nijssen B. , Mishra V. , Andreadis K. M. , Maurer E. P. , and Lettenmaier D. P. , 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Deems J. S. , Buma B. , Barsugli J. J. , Schneider D. , Molotch N. P. , Wolter K. , and Wessman C. A. , 2015: Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains. J. Hydrol., 523, 196210, doi:10.1016/j.jhydrol.2015.01.039.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Cayan D. R. , and Dettinger M. D. , 2003: Meteorology and hydrology in Yosemite National Park: A sensor network application. Information Processing in Sensor Networks, F. Zhao and L. Guibas, Eds., Lecture Notes in Computer Science, Vol. 2634, Springer, 518–528, doi:10.1007/3-540-36978-3_35.

  • Lundquist, J. D., Dickerson-Lange S. E. , Lutz J. A. , and Cristea N. C. , 2013: Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling. Water Resour. Res., 49, 63566370, doi:10.1002/wrcr.20504.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Wayand N. E. , Massmann A. , Clark M. P. , Lott F. , and Cristea N. C. , 2015: Diagnosis of insidious data disasters. Water Resour. Res., 51, 38153827, doi:10.1002/2014WR016585.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Pinker R. T. , 2012: Modeling shortwave radiative fluxes from satellites. J. Geophys. Res., 117, D23202, doi:10.1029/2012JD018332.

    • Search Google Scholar
    • Export Citation
  • Madani, K., and Lund J. R. , 2010: Estimated impacts of climate warming on California’s high-elevation hydropower. Climatic Change, 102, 521538, doi:10.1007/s10584-009-9750-8.

    • Search Google Scholar
    • Export Citation
  • Mahat, V., 2011: Effect of vegetation on the accumulation and melting of snow at the TW Daniels Experimental Forest. Utah State University, Ph.D. thesis, 181 pp. [Available online at http://digitalcommons.usu.edu/etd/1078.]

  • Mahat, V., and Tarboton D. G. , 2012: Canopy radiation transmission for an energy balance snowmelt model. Water Resour. Res., 48, W01534, doi:10.1029/2011WR010438; Corrigendum, 48, W03901, doi:10.1029/2012WR011964.

    • Search Google Scholar
    • Export Citation
  • Marks, D., Kimball J. , Tingey D. , and Link T. , 1998: The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood. Hydrol. Processes, 12, 15691587, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L.

    • Search Google Scholar
    • Export Citation
  • Maurer, E., Wood A. , Adam J. , Lettenmaier D. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., Clark M. P. , Slater A. G. , Brekke L. D. , Elsner M. M. , Arnold J. R. , and Gangopadhyay S. , 2014: Hydrologic implications of different large-scale meteorological model forcing datasets in mountainous regions. J. Hydrometeor., 15, 474488, doi:10.1175/JHM-D-13-036.1.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., Arnold J. G. , Van Liew M. W. , Binger R. L. , Harmel R. D. , and Veith T. L. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, doi:10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Morin, S., Lejeune Y. , Lesaffre B. , Panel J.-M. , Poncet D. , David P. , and Sudul M. , 2012: An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models. Earth Syst. Sci. Data, 4, 1321, doi:10.5194/essd-4-13-2012.

    • Search Google Scholar
    • Export Citation
  • Painter, T. H., Skiles S. M. , Deems J. S. , Bryant A. C. , and Landry C. C. , 2012: Dust radiative forcing in snow of the Upper Colorado River basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res., 48, W07521, doi:10.1029/2012WR011985.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Park, D., and Markus M. , 2014: Analysis of a changing hydrologic flood regime using the Variable Infiltration Capacity model. J. Hydrol., 515, 267280, doi:10.1016/j.jhydrol.2014.05.004.

    • Search Google Scholar
    • Export Citation
  • Parlange, M., and Katz R. , 2000: An extended version of the Richardson model for simulating daily weather variables. J. Appl. Meteor., 39, 610622, doi:10.1175/1520-0450-39.5.610.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., Westerling A. L. , and Oyler J. , 2013: Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system. Hydrol. Earth Syst. Sci., 17, 18331850, doi:10.5194/hess-17-1833-2013.

    • Search Google Scholar
    • Export Citation
  • Pinker, R., and Laszlo I. , 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211, doi:10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prata, A., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122, 11271151, doi:10.1002/qj.49712253306.

    • Search Google Scholar
    • Export Citation
  • Qu, X., and Hall A. , 2006: Assessing snow albedo feedback in simulated climate change. J. Climate, 19, 26172630, doi:10.1175/JCLI3750.1.

    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., 2013: Quantification of uncertainties in snow accumulation, snowmelt, and snow disappearance dates. Ph.D. thesis, University of Washington, 206 pp. [Available online at https://digital.lib.washington.edu/researchworks/handle/1773/24108.]

  • Raleigh, M. S., Landry C. C. , Hayashi M. , Quinton W. L. , and Lundquist J. D. , 2013: Approximating snow surface temperature from standard temperature and humidity data: New possibilities for snow model and remote sensing evaluation. Water Resour. Res., 49, 80538069, doi:10.1002/2013WR013958.

    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., Lundquist J. D. , and Clark M. P. , 2015: Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework. Hydrol. Earth Syst. Sci., 19, 31533179, doi:10.5194/hess-19-3153-2015.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Reba, M. L., Marks D. , Seyfried M. , Winstral A. , Kumar M. , and Flerchinger G. , 2011: A long-term data set for hydrologic modeling in a snow-dominated mountain catchment. Water Resour. Res., 47, W07702, doi:10.1029/2010WR010030.

    • Search Google Scholar
    • Export Citation
  • Running, S. W., Nemani R. R. , and Hungerford R. D. , 1987: Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res., 17, 472483, doi:10.1139/x87-081.

    • Search Google Scholar
    • Export Citation
  • Schmucki, E., Marty C. , Fierz C. , and Lehning M. , 2014: Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input. Cold Reg. Sci. Technol., 99, 2737, doi:10.1016/j.coldregions.2013.12.004.

    • Search Google Scholar
    • Export Citation
  • Schnorbus, M., and Alila Y. , 2004: Generation of an hourly meteorological time series for an alpine basin in British Columbia for use in numerical hydrologic modeling. J. Hydrometeor., 5, 862882, doi:10.1175/1525-7541(2004)005<0862:GOAHMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scipión, D. E., Mott R. , Lehning M. , Schneebeli M. , and Berne A. , 2013: Seasonal small-scale spatial variability in alpine snowfall and snow accumulation. Water Resour. Res., 49, 14461457, doi:10.1002/wrcr.20135.

    • Search Google Scholar
    • Export Citation
  • Shook, K., and Pomeroy J. , 2011: Synthesis of incoming shortwave radiation for hydrological simulation. Hydrol. Res., 42, 433–446, doi:10.2166/nh.2011.074.

    • Search Google Scholar
    • Export Citation
  • Skiles, S. M., Painter T. H. , Deems J. S. , Bryant A. C. , and Landry C. C. , 2012: Dust radiative forcing in snow of the Upper Colorado River basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res., 48, W07522, doi:10.1029/2012WR011986.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2, 725, doi:10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., Barrett A. P. , Clark M. P. , Lundquist J. D. , and Raleigh M. S. , 2013: Uncertainty in seasonal snow reconstruction: Relative impacts of model forcing and image availability. Adv. Water Resour., 55, 165177, doi:10.1016/j.advwatres.2012.07.006.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., and Wagner A. M. , 2010: Using repeated patterns in snow distribution modeling: An Arctic example. Water Resour. Res., 46, W12549, doi:10.1029/2010WR009434.

    • Search Google Scholar
    • Export Citation
  • Tarboton, D., and Luce C. , 1996: Utah Energy Balance Snow Accumulation and Melt Model (UEB): Computer model technical description users guide. Utah Water Research Laboratory/USDA Forest Service Intermountain Research Station, 64 pp. [Available online at http://www.fs.fed.us/rm/boise/publications/watershed/rmrs_1996_tarbotond001.pdf.]

  • Thornton, P. E., and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93, 211228, doi:10.1016/S0168-1923(98)00126-9.

    • Search Google Scholar
    • Export Citation
  • Trujillo, E., Molotch N. P. , Goulden M. L. , Kelly A. E. , and Bales R. C. , 2012: Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci., 5, 705709, doi:10.1038/ngeo1571.

    • Search Google Scholar
    • Export Citation
  • Unsworth, M. H., and Monteith J. L. , 1975: Long-wave radiation at the ground I. Angular distribution of incoming radiation. Quart. J. Roy. Meteor. Soc., 101, 1324, doi:10.1002/qj.49710142703.

    • Search Google Scholar
    • Export Citation
  • U.S. Army Corps of Engineers, 1956: Snow hydrology: Summary report of the snow investigations. North Pacific Division, USACE, 437 pp.

  • Varhola, A., Coops N. C. , Weiler M. , and Moore R. D. , 2010: Forest canopy effects on snow accumulation and ablation: An integrative review of empirical results. J. Hydrol., 392, 219233, doi:10.1016/j.jhydrol.2010.08.009.

    • Search Google Scholar
    • Export Citation
  • Viviroli, D., Weingartner R. , and Messerli B. , 2003: Assessing the hydrological significance of the world’s mountains. Mt. Res. Dev., 23, 3240, doi:10.1659/0276-4741(2003)023[0032:ATHSOT]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viviroli, D., and Coauthors, 2011: Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci., 15, 471504, doi:10.5194/hess-15-471-2011.

    • Search Google Scholar
    • Export Citation
  • Waichler, S. R., and Wigmosta M. S. , 2003: Development of hourly meteorological values from daily data and significance to hydrological modeling at H. J. Andrews Experimental Forest. J. Hydrometeor., 4, 251263, doi:10.1175/1525-7541(2003)4<251:DOHMVF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walter, T. M., Brooks E. S. , McCool D. K. , King L. G. , Molnau M. , and Boll J. , 2005: Process-based snowmelt modeling: Does it require more input data than temperature-index modeling? J. Hydrol., 300, 6575, doi:10.1016/j.jhydrol.2004.05.002.

    • Search Google Scholar
    • Export Citation
  • Watson, F. G. R., Newman W. B. , Coughlan J. C. , and Garrott R. A. , 2006: Testing a distributed snowpack simulation model against spatial observations. J. Hydrol., 328, 453466, doi:10.1016/j.jhydrol.2005.12.012.

    • Search Google Scholar
    • Export Citation
  • Wayand, N. E., Hamlet A. F. , Hughes M. , Feld S. I. , and Lundquist J. D. , 2013: Intercomparison of meteorological forcing data from empirical and mesoscale model sources in the North Fork American River basin in northern Sierra Nevada, California. J. Hydrometeor., 14, 677699, doi:10.1175/JHM-D-12-0102.1.

    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., Vail L. W. , and Lettenmaier D. P. , 1994: A distributed hydrology–vegetation model for complex terrain. Water Resour. Res., 30, 16651679, doi:10.1029/94WR00436.

    • Search Google Scholar
    • Export Citation
  • Winstral, A., Elder K. , and Davis R. , 2002: Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J. Hydrometeor., 3, 524538, doi:10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winstral, A., Marks D. , and Gurney R. , 2009: An efficient method for distributing wind speeds over heterogeneous terrain. Hydrol. Processes, 23, 25262535, doi:10.1002/hyp.7141.

    • Search Google Scholar
    • Export Citation
  • Winther, J.-G., and Hall D. , 1999: Satellite-derived snow coverage related to hydropower production in Norway: Present and future. Int. J. Remote Sens., 20, 29913008, doi:10.1080/014311699211570.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2008: Guide to meteorological instruments and methods of observation. 7th ed. WMO 8, 681 pp.

  • Yang, D., and Coauthors, 2000: An evaluation of the Wyoming Gauge System for snowfall measurement. Water Resour. Res., 36, 26652677, doi:10.1029/2000WR900158.

    • Search Google Scholar
    • Export Citation
  • You, J., Tarboton D. G. , and Luce C. H. , 2014: Modeling the snow surface temperature with a one-layer energy balance snowmelt model. Hydrol. Earth Syst. Sci., 18, 50615076, doi:10.5194/hess-18-5061-2014.

    • Search Google Scholar
    • Export Citation
  • Zuzel, J. F., and Cox L. M. , 1975: Relative importance of meteorological variables in snowmelt. Water Resour. Res., 11, 174176, doi:10.1029/WR011i001p00174.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 859 268 12
PDF Downloads 531 104 12