The Contribution of Reservoirs to Global Land Surface Water Storage Variations

Tian Zhou Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Tian Zhou in
Current site
Google Scholar
PubMed
Close
,
Bart Nijssen Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Bart Nijssen in
Current site
Google Scholar
PubMed
Close
,
Huilin Gao Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas

Search for other papers by Huilin Gao in
Current site
Google Scholar
PubMed
Close
, and
Dennis P. Lettenmaier Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Dennis P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variations is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.25° latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60% of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10% of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72% of combined snow water equivalent and soil moisture storage.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0002.s1.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Current affiliation: Department of Geography, University of California, Los Angeles, Los Angeles, California.

Corresponding author address: Dr. Dennis P. Lettenmaier, Department of Geography, University of California, Los Angeles, Los Angeles, CA 90095. E-mail: dlettenm@ucla.edu

Abstract

Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variations is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.25° latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60% of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10% of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72% of combined snow water equivalent and soil moisture storage.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0002.s1.

Current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

Current affiliation: Department of Geography, University of California, Los Angeles, Los Angeles, California.

Corresponding author address: Dr. Dennis P. Lettenmaier, Department of Geography, University of California, Los Angeles, Los Angeles, CA 90095. E-mail: dlettenm@ucla.edu

Supplementary Materials

    • Supplemental Materials (DOCX 469.59 KB)
Save
  • Biancamaria, S., and Coauthors, 2010: Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 619, doi:10.1109/JSTARS.2009.2034614.

    • Search Google Scholar
    • Export Citation
  • Biemans, H., Haddeland I. , Kabat P. , Ludwig F. , Hutjes R. , Heinke J. , Von Bloh W. , and Gerten D. , 2011: Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res., 47, W03509, doi:10.1029/2009WR008929.

    • Search Google Scholar
    • Export Citation
  • Chao, B. F., Wu Y. H. , and Li Y. S. , 2008: Impact of artificial reservoir water impoundment on global sea level. Science, 320, 212214, doi:10.1126/science.1154580.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., Wood A. W. , Voisin N. , Lettenmaier D. P. , and Palmer R. N. , 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, doi:10.1023/B:CLIM.0000013684.13621.1f.

    • Search Google Scholar
    • Export Citation
  • Coughlan, M., and Avissar R. , 1996: The Global Energy and Water Cycle Experiment (GEWEX) Continental‐Scale International Project (GCIP): An overview. J. Geophys. Res., 101, 71397147, doi:10.1029/96JD00125.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1995: Problems in initializing soil wetness. Bull. Amer. Meteor. Soc., 76, 22342240.

  • Döll, P., Fiedler K. , and Zhang J. , 2009: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci., 13, 24132432, doi:10.5194/hess-13-2413-2009.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., Sorooshian S. , and Gupta V. K. , 1994: Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158, 265284, doi:10.1016/0022-1694(94)90057-4.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., Vörösmarty C. J. , and Grabs W. , 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 15-1−15-10, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Frappart, F., Papa F. , Santos da Silva J. , Ramillien G. , Prigent C. , Seyler F. , and Calmant S. , 2012: Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ. Res. Lett., 7, 044010, doi:10.1088/1748-9326/7/4/044010.

    • Search Google Scholar
    • Export Citation
  • Gao, H., Birkett C. , and Lettenmaier D. P. , 2012: Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res., 48, W09504, doi:10.1029/2012WR012063.

    • Search Google Scholar
    • Export Citation
  • Getirana, A., Boone A. , Yamazaki D. , Decharme B. , Papa F. , and Mognard N. , 2012: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon basin. J. Hydrometeor., 13, 16411665, doi:10.1175/JHM-D-12-021.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, L. J., Steffen W. , Jonsson B. F. , Folke C. , Falkenmark M. , and Johannessen A. , 2005: Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA, 102, 76127617, doi:10.1073/pnas.0500208102.

    • Search Google Scholar
    • Export Citation
  • Gornitz, V., 2000: Impoundment, groundwater mining, and other hydrologic transformations: Impacts on global sea level rise. Sea Level Rise: History and Consequences, B. C. Douglas, M. S. Kearney, and S. P. Leatherman, Eds., Academic Press, 97–119.

  • Haddeland, I., Skaugen T. , and Lettenmaier D. P. , 2006: Anthropogenic impacts on continental surface water fluxes. Geophys. Res. Lett., 33, L08406, doi:10.1029/2006GL026047.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., Skaugen T. , and Lettenmaier D. P. , 2007: Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol. Earth Syst. Sci., 11, 10351045, doi:10.5194/hess-11-1035-2007.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , and Oki T. , 2006: A reservoir operation scheme for global river routing models. J. Hydrol., 327, 2241, doi:10.1016/j.jhydrol.2005.11.011.

    • Search Google Scholar
    • Export Citation
  • ICOLD, 2007: World Register of Dams 2007. International Commission on Large Dams, accessed 10 October 2013. [Available online at http://www.icold-cigb.org/GB/World_register/world_register.asp.]

  • Kinter, J., and Shukla J. , 1990: The global hydrologic and energy cycles: Suggestions for studies in the pre-Global Energy and Water Cycle Experiment (GEWEX) period. Bull. Amer. Meteor. Soc., 71, 181189, doi:10.1175/1520-0477(1990)071<0181:TGHAEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., and Coauthors, 2011: High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ., 9, 494502, doi:10.1890/100125.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., and Famiglietti J. S. , 2006: Hydrology: Water from on high. Nature, 444, 562563, doi:10.1038/444562a.

  • Lettenmaier, D. P., and Milly P. , 2009: Land waters and sea level. Nat. Geosci., 2, 452454, doi:10.1038/ngeo567.

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Nolte‐Holube R. , and Raschke E. , 1996: A large‐scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus, 48A, 708721, doi:10.1034/j.1600-0870.1996.t01-3-00009.x.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. , 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141, doi:10.1080/02626669809492107.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., O’Donnell G. M. , Lettenmaier D. P. , Lohmann D. , and Wood E. F. , 2001a: Predicting the discharge of global rivers. J. Climate, 14, 33073323, doi:10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., Schnur R. , and Lettenmaier D. P. , 2001b: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J. Climate, 14, 17901808, doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Kanae S. , 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, doi:10.1126/science.1128845.

    • Search Google Scholar
    • Export Citation
  • Papa, F., Frappart F. , Güntner A. , Prigent C. , Aires F. , Getirana A. C. V. , and Maurer R. , 2013: Surface freshwater storage and variability in the Amazon basin from multi-satellite observations, 1993–2007. J. Geophys. Res. Atmos., 118, 11 95111 965, doi:10.1002/2013JD020500.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y. N., Hanasaki N. , Yeh P. J. , Yamada T. J. , Kanae S. , and Oki T. , 2012: Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci., 5, 389392, doi:10.1038/ngeo1476.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Siebert, S., Henrich V. , Frenken K. , and Burke J. , 2013: Global Map of Irrigation Areas version 5. Rheinische Friedrich-Wilhelms-University/Food and Agriculture Organization of the United Nations, accessed 5 January 2014. [Available online at http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm.]

  • Thenkabail, P. S., and Coauthors, 2009: Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens., 30, 36793733, doi:10.1080/01431160802698919.

    • Search Google Scholar
    • Export Citation
  • Tranvik, L. J., and Coauthors, 2009: Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr., 54, 22982314, doi:10.4319/lo.2009.54.6_part_2.2298.

    • Search Google Scholar
    • Export Citation
  • USGS, 2014: One estimate of global water distribution. The World’s Water, U.S. Geological Survey, accessed 4 June 2014. [Available online at http://water.usgs.gov/edu/earthwherewater.html.]

  • Vörösmarty, C. J., Sharma K. P. , Fekete B. M. , Copeland A. H. , Holden J. , Marble J. , and Lough J. A. , 1997: The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26 (4), 210219.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Meybeck M. , Fekete B. , Sharma K. , Green P. , and Syvitksi J. , 2003: Anthropogenic sediment retention: Major global impact from registered river impoundments. Global Planet. Change, 39, 169190, doi:10.1016/S0921-8181(03)00023-7.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., Gupta H. V. , Bouten W. , and Sorooshian S. , 2003: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res., 39, 1201, doi:10.1029/2002WR001642.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Yang Z. , Saito Y. , Liu J. P. , and Sun X. , 2006: Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Global Planet. Change, 50, 212225, doi:10.1016/j.gloplacha.2006.01.005.

    • Search Google Scholar
    • Export Citation
  • White, W. R., 2005: World water storage in man-made reservoirs. Rep. FR/R0012, Foundation for Water Research, Marlow, United Kingdom, 40 pp.

  • Wu, H., Kimball J. S. , Mantua N. , and Stanford J. , 2011: Automated upscaling of river networks for macroscale hydrological modeling. Water Resour. Res., 47, W03517, doi:10.1029/2009WR008871.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2378 684 69
PDF Downloads 1824 422 50