Subgrid-Scale Variability for Thermodynamic Variables in an Offline Land Surface Prediction System

Mélanie C. Rochoux Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Mélanie C. Rochoux in
Current site
Google Scholar
PubMed
Close
,
Stéphane Bélair Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Stéphane Bélair in
Current site
Google Scholar
PubMed
Close
,
Maria Abrahamowicz Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Maria Abrahamowicz in
Current site
Google Scholar
PubMed
Close
, and
Pierre Pellerin Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Pierre Pellerin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents a numerical analysis of the impact of the horizontal resolution on the forecast capability of the Canadian offline land surface prediction system (SPS; formerly known as GEM-Surf) forced by the 15-km Global Environmental Multiscale (GEM) atmospheric model. This system is used to quantify on a statistical basis the subgrid-scale variability of (near-)surface variables for 25-km grid spacing based on the 2.5- or 10-km SPS run at regional scale over the 2012 summer season. The model bias and the distributions characterizing the subgrid-scale variability drastically depend on the geographic areas as well as on the diurnal cycle. These results show the benefits of high-resolution land surface simulations to account for length scales that are more consistent with the scales at which the actual land surface balance is affected by the heterogeneous geophysical fields (i.e., roughness length, land–water mask, glacier mask, and soil texture). The model bias results highlight the potential of an SPS–GEM two-way coupling strategy for refining predictions near the surface through the upscaling of high-resolution surface heat fluxes to the coarser atmospheric grid spacing, with these fluxes being significantly different from those explicitly resolved at 25 km and featuring nonlinear behavior with respect to the horizontal resolution. Since the computational power of meteorological operational centers progressively increases, making it possible to run high-resolution limited-area models, solving the surface at high resolution in a surface–atmosphere fully coupled system becomes a key aspect for improving numerical weather and environmental forecast performance.

Denotes Open Access content.

Corresponding author address: Mélanie C. Rochoux, Meteorological Research Division, Environment Canada, 2121 Trans-Canada Highway, Dorval, QC H9P 1J3, Canada. E-mail: melanie.rochoux@graduates.centraliens.net

Abstract

This study presents a numerical analysis of the impact of the horizontal resolution on the forecast capability of the Canadian offline land surface prediction system (SPS; formerly known as GEM-Surf) forced by the 15-km Global Environmental Multiscale (GEM) atmospheric model. This system is used to quantify on a statistical basis the subgrid-scale variability of (near-)surface variables for 25-km grid spacing based on the 2.5- or 10-km SPS run at regional scale over the 2012 summer season. The model bias and the distributions characterizing the subgrid-scale variability drastically depend on the geographic areas as well as on the diurnal cycle. These results show the benefits of high-resolution land surface simulations to account for length scales that are more consistent with the scales at which the actual land surface balance is affected by the heterogeneous geophysical fields (i.e., roughness length, land–water mask, glacier mask, and soil texture). The model bias results highlight the potential of an SPS–GEM two-way coupling strategy for refining predictions near the surface through the upscaling of high-resolution surface heat fluxes to the coarser atmospheric grid spacing, with these fluxes being significantly different from those explicitly resolved at 25 km and featuring nonlinear behavior with respect to the horizontal resolution. Since the computational power of meteorological operational centers progressively increases, making it possible to run high-resolution limited-area models, solving the surface at high resolution in a surface–atmosphere fully coupled system becomes a key aspect for improving numerical weather and environmental forecast performance.

Denotes Open Access content.

Corresponding author address: Mélanie C. Rochoux, Meteorological Research Division, Environment Canada, 2121 Trans-Canada Highway, Dorval, QC H9P 1J3, Canada. E-mail: melanie.rochoux@graduates.centraliens.net
Save
  • Avissar, R., 1998: Which type of soil–vegetation–atmosphere transfer scheme is needed for general circulation models: A proposal for a higher-order scheme. J. Hydrol., 212–213, 136154, doi:10.1016/S0022-1694(98)00227-3.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and Schmidt T. , 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 26662689, doi:10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Crevier L.-P. , Mailhot J. , Bilodeau B. , and Delage Y. , 2003a: Operational implementation of the ISBA land surface scheme in the Canadian Regional Weather Forecast Model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Brown R. , Mailhot J. , Bilodeau B. , and Crevier L.-P. , 2003b: Operational implementation of the ISBA land surface scheme in the Canadian Regional Weather Forecast Model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bernier, N., Bélair S. , Bilodeau B. , and Tong L. , 2011: Near-surface and land surface forecast system of the Vancouver 2010 winter Olympic and Paralympic games. J. Hydrometeor., 12, 508530, doi:10.1175/2011JHM1250.1.

    • Search Google Scholar
    • Export Citation
  • Best, M., Beljaars A. , Polcher J. , and Viterbo P. , 2004: A proposed structure for coupling tiled surfaces with the planetary boundary layer. J. Hydrometeor., 5, 12711278, doi:10.1175/JHM-382.1.

    • Search Google Scholar
    • Export Citation
  • Bicheron, P., and Coauthors, 2006: Globcover: A 300-m global land cover product for 2005 using ENVISAT MERIS time series. Proc. Second Int. Symp. on Recent Advances in Quantitative Remote Sensing, Valencia, Spain, University of Valencia–Global Change Unit, 538–542. [Available online at http://ipl.uv.es/raqrs/.]

  • Bontemps, S., Defourny P. , Bogaert E. V. , Arino O. , Kalogirou V. , and Perez J. , 2011: Globcover 2009: Products description and validation report. Tech. Rep., Université catholique de Louvain/European Space Agency, 53 pp. [Available online at http://due.esrin.esa.int/files/GLOBCOVER2009_Validation_Report_2.2.pdf.]

  • Carrera, M., Bélair S. , Fortin V. , Bilodeau B. , Charpentier D. , and Doré I. , 2010: Evaluation of snowpack simulations over the Canadian Rockies with an experimental hydrometeorological modeling system. J. Hydrometeor., 11, 11231140, doi:10.1175/2010JHM1274.1.

    • Search Google Scholar
    • Export Citation
  • Côté, J., Gravel S. , Méthot A. , Patoine A. , Roch M. , and Staniforth A. , 1998a: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Côté, J., Desmarais J.-G. , Gravel S. , Méthot A. , Patoine A. , Roch M. , and Staniforth A. , 1998b: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126, 13971418, doi:10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Kotlarski S. , Viterbo P. , Balsamo G. , Miranda P. , Schär C. , Bissolli P. , and Jonas T. , 2011: Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model. J. Geophys. Res., 116, D21109, doi:10.1029/2011JD016061.

    • Search Google Scholar
    • Export Citation
  • Erfani, A., Mailhot J. , Gravel S. , Desgagné M. , King P. , Sills D. , McLennan N. , and Jacob D. , 2005: The high resolution limited area version of the Global Environmental Multiscale Model (GEM-LAM) and its potential operational applications. 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., 1M.4. [Available online at http://ams.confex.com/ams/pdfpapers/97308.pdf.]

  • Essery, R., Best M. , Betts R. , Cox P. , and Taylor C. , 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530543, doi:10.1175/1525-7541(2003)004<0530:EROSHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, E., Seneviratne S. , Vidale P. , Lüthi D. , and Schär C. , 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, doi:10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Girard, C., and Coauthors, 2014: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, doi:10.1175/MWR-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Leroyer, S., Bélair S. , Mailhot J. , and Strachan I. , 2011: Microscale numerical prediction over Montreal with the Canadian external urban modeling system. J. Appl. Meteor. Climatol., 50, 24102428, doi:10.1175/JAMC-D-11-013.1.

    • Search Google Scholar
    • Export Citation
  • Leroyer, S., Bélair S. , Husain S. , and Mailhot J. , 2014: Subkilometer numerical weather prediction in an urban coastal area: A case study over the Vancouver metropolitan area. J. Appl. Meteor. Climatol., 53, 14331453, doi:10.1175/JAMC-D-13-0202.1.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J., Brasnett B. , and Gagnon S. , 2007: A Canadian Precipitation Analysis (CAPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117, doi:10.3137/ao.450101.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2006: The 15-km version of the Canadian regional forecast system. Atmos.–Ocean, 44, 133149, doi:10.3137/ao.440202.

    • Search Google Scholar
    • Export Citation
  • Marke, T., Mauser W. , Pfeiffer A. , and Zängl G. , 2011: A pragmatic approach for the downscaling and bias correction of regional climate simulations: Evaluation in hydrological modeling. Geosci. Model Dev., 4, 759770, doi:10.5194/gmd-4-759-2011.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and Coauthors, 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, doi:10.5194/gmd-6-929-2013.

    • Search Google Scholar
    • Export Citation
  • Molod, A., and Salmun H. , 2002: A global assessment of the mosaic approach to modeling land surface heterogeneity. J. Geophys. Res., 107, 4217, doi:10.1029/2001JD000588.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117,0536:ASPOLS.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Mahfouf J.-F. , 1996: The ISBA land surface parameterization. Global Planet.Change, 13, 145159, doi:10.1016/0921-8181(95)00043-7.

    • Search Google Scholar
    • Export Citation
  • Pigeon, G., Moscicki M. , Voogt J. , and Masson V. , 2008: Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme. Meteor. Atmos. Phys., 102, 159171, doi:10.1007/s00703-008-0320-9.

    • Search Google Scholar
    • Export Citation
  • Polcher, J., and Coauthors, 1998: A proposal for a general interface between land-surface schemes and general circulation models. Global Planet. Change, 19, 261276, doi:10.1016/S0921-8181(98)00052-6.

    • Search Google Scholar
    • Export Citation
  • Salgado, R., and Moigne P. L. , 2010: Coupling of the FLake model to the Surfex externalized surface model. Boreal Env. Res., 15, 231244.

    • Search Google Scholar
    • Export Citation
  • Schomburg, A., Venema V. , Ament F. , and Simmer C. , 2012: Disaggregation of screen-level variables in a numerical weather prediction model with an explicit simulation of subgrid-scale land-surface heterogeneity. Meteor. Atmos. Phys., 116, 8194, doi:10.1007/s00703-012-0183-y.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., Brousseau P. , Malardel S. , Hello G. , Bénard P. , Bouttier F. , Lac C. , and Masson V. , 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Seth, A., Giorgi F. , and Dickinson R. , 1994: Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS). J. Geophys. Res., 99, 18 65118 667, doi:10.1029/94JD01330.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., 2000: Assessing the response of subgrid hydrologic processes to atmospheric forcing with a hydrologic model response. Global Planet. Change, 25, 117, doi:10.1016/S0921-8181(00)00018-7.

    • Search Google Scholar
    • Export Citation
  • Zabel, F., and Mauser W. , 2013: 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrol. Earth Syst. Sci., 17, 17051714, doi:10.5194/hess-17-1705-2013.

    • Search Google Scholar
    • Export Citation
  • Zabel, F., Mauser W. , Marke T. , Pfeiffer A. , Zängl G. , and Wastl C. , 2012: Inter-comparison of two-land surface models applied at different scales and their feedbacks while coupled with a regional climate model. Hydrol. Earth Syst. Sci., 16, 10171031, doi:10.5194/hess-16-1017-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 947 332 47
PDF Downloads 83 41 1