Future Changes in Drought Characteristics: Regional Analysis for South Korea under CMIP5 Projections

Jinyoung Rhee Climate Research Department, APEC Climate Center, Busan, South Korea

Search for other papers by Jinyoung Rhee in
Current site
Google Scholar
PubMed
Close
and
Jaepil Cho Climate Research Department, APEC Climate Center, Busan, South Korea

Search for other papers by Jaepil Cho in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The future changes in drought characteristics were examined on a regional scale for South Korea, in northeastern Asia, using 17 bias-corrected projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) of representative concentration pathway (RCP) scenarios 4.5 and 8.5. The frequency of severe or extreme drought, based on the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI), with time scales of 1, 3, and 12 months (i.e., SPI1, SPI3, SPI12, SPEI1, SPEI3, and SPEI12), was considered, as well as the average duration based on SPEI1. A multimodel ensemble (MME) was produced using selected models, and future changes were investigated in terms of both drought frequency and the average duration for the entire area and four river basins. The changes in drought frequency largely depend on the selection of a drought index, rather than climate projection scenarios. SPEI3 mostly projected future increases in drought frequency, while SPI3 showed varied projections. SPI12 projected decreases in drought frequency for both scenarios in the study area, while differences between river basins were observed for SPEI12. Increases in the average duration of droughts were projected based on SPEI1, indicating an increase in persistent short-term droughts in the future. The results emphasize the importance of regional- and subregional-scale analysis in northeastern Asia. The findings of the study provide valuable information that can be used for drought-related decision-making, which could not be obtained from studies on a global spatial scale.

Corresponding author address: Jinyoung Rhee, Climate Research Department, APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan 48058, South Korea. E-mail: jyrhee@apcc21.org

Abstract

The future changes in drought characteristics were examined on a regional scale for South Korea, in northeastern Asia, using 17 bias-corrected projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) of representative concentration pathway (RCP) scenarios 4.5 and 8.5. The frequency of severe or extreme drought, based on the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI), with time scales of 1, 3, and 12 months (i.e., SPI1, SPI3, SPI12, SPEI1, SPEI3, and SPEI12), was considered, as well as the average duration based on SPEI1. A multimodel ensemble (MME) was produced using selected models, and future changes were investigated in terms of both drought frequency and the average duration for the entire area and four river basins. The changes in drought frequency largely depend on the selection of a drought index, rather than climate projection scenarios. SPEI3 mostly projected future increases in drought frequency, while SPI3 showed varied projections. SPI12 projected decreases in drought frequency for both scenarios in the study area, while differences between river basins were observed for SPEI12. Increases in the average duration of droughts were projected based on SPEI1, indicating an increase in persistent short-term droughts in the future. The results emphasize the importance of regional- and subregional-scale analysis in northeastern Asia. The findings of the study provide valuable information that can be used for drought-related decision-making, which could not be obtained from studies on a global spatial scale.

Corresponding author address: Jinyoung Rhee, Climate Research Department, APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan 48058, South Korea. E-mail: jyrhee@apcc21.org
Save
  • Ashfaq, M., Bowling L. C. , Cherkauer K. , Pal J. S. , and Diffenbaugh N. S. , 2010: Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States. J. Geophys. Res., 115, D14116, doi:10.1029/2009JD012965.

    • Search Google Scholar
    • Export Citation
  • Begueria, S., Vicente-Serrano S. M. , Reig F. , and Latorre B. , 2014: Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol., 34, 30013023, doi:10.1002/joc.3887.

    • Search Google Scholar
    • Export Citation
  • Boé, J., Terray L. , Habets F. , and Martin E. , 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431655, doi:10.1002/joc.1602.

    • Search Google Scholar
    • Export Citation
  • Burke, E. J., and Brown S. J. , 2008: Evaluating uncertainties in the projection of future drought. J. Hydrometeor., 9, 292299, doi:10.1175/2007JHM929.1.

    • Search Google Scholar
    • Export Citation
  • Dunnett, C. W., 1955: A multiple comparison procedure for comparing several treatments with a control. J. Amer. Stat. Assoc., 50, 10961121, doi:10.1080/01621459.1955.10501294.

    • Search Google Scholar
    • Export Citation
  • Eden, J. M., Widmann M. , Grawe D. , and Rast S. , 2012: Skill, correction, and downscaling of GCM-simulated precipitation. J. Climate, 25, 39703984, doi:10.1175/JCLI-D-11-00254.1.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., Zwiers F. W. , Weaver A. J. , Hegerl G. C. , Allen M. R. , and Stott P. A. , 2002: Detecting anthropogenic influence with a multi-model ensemble. Geophys. Res. Lett., 29, 1970, doi:10.1029/2002GL015836.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., Bremnes J. B. , Haugen J. E. , and Engen-Skaugen T. , 2012: Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, doi:10.5194/hess-16-3383-2012.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, doi:10.1111/j.1752-1688.1999.tb03592.x.

    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. L., Hargreaves G. H. , and Riley J. P. , 1985: Agricultural benefits for Senegal River basin. J. Irrig. Drain. Eng., 111, 113124, doi:10.1061/(ASCE)0733-9437(1985)111:2(113).

    • Search Google Scholar
    • Export Citation
  • Hayes, M., Svoboda M. , Wall N. , and Widhalm M. , 2011: The Lincoln Declaration on drought indices: Universal meteorological drought index recommended. Bull. Amer. Meteor. Soc., 92, 485488, doi:10.1175/2010BAMS3103.1.

    • Search Google Scholar
    • Export Citation
  • Ines, A. V., and Hansen J. W. , 2006: Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteor., 138, 4453, doi:10.1016/j.agrformet.2006.03.009.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Eds., Cambridge University Press, 582 pp.

  • Kim, B. S., Park I. H. , and Ha S. R. , 2014: Future projection of droughts over South Korea using representative concentration pathways (RCPs). Terr. Atmos. Ocean. Sci., 25, 673688, doi:10.3319/TAO.2014.03.13.01(Hy).

    • Search Google Scholar
    • Export Citation
  • Kim, D.-W., Byun H.-R. , Choi K.-S. , and Oh S.-B. , 2011: A spatiotemporal analysis of historical droughts in Korea. J. Appl. Meteor. Climatol, 50, 18951912, doi:10.1175/2011JAMC2664.1.

    • Search Google Scholar
    • Export Citation
  • KMA, 2011: Climatological normals of Korea (1981–2010). Publ. 11-1360000-000077-14, Korea Meteorological Administration, 678 pp. [Available online at http://www.kma.go.kr/down/Climatological_2010.pdf.]

  • Kwak, J., Kim S. , Singh V. P. , Kim H. S. , Kim D. , Hong S. , and Lee K. , 2015: Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea. KSCE J. Civ. Eng., 19, 376384, doi:10.1007/s12205-015-0446-5.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and Boer G. J. , 2001: CMIP1 evaluation and intercomparison of coupled climate models. Climate Dyn., 17, 83106, doi:10.1007/PL00013736.

    • Search Google Scholar
    • Export Citation
  • Lee, J. H., and Kim C. J. , 2012: A multimodel assessment of the climate change effect on the drought severity–duration–frequency relationship. Hydrol. Processes, 27, 28002813, doi:10.1002/hyp.9390.

    • Search Google Scholar
    • Export Citation
  • Li, H., Sheffield J. , and Wood E. F. , 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant 15 quantile matching. J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., Doesken N. J. , and Kleist J. , 1993: The relationship of drought frequency and duration of time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179186.

  • Meehl, G. A., Covey C. , Taylor K. E. , Delworth T. , Stouffer R. J. , Latif M. , McAvaney B. , and Mitchell J. F. B. , 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • MLIT, 2013: 2013 annual report on land planning and use (in Korean). Ministry of Land, Infrastructure, and Transport, 773 pp.

  • Orlowsky, B., and Seneviratne S. I. , 2013: Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci., 17, 17651781, doi:10.5194/hess-17-1765-2013.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Sohn, S.-J., Ahn J.-B. , and Tam C.-Y. , 2013: Six month-lead downscaling prediction of winter to spring drought in South Korea based on a multimodel ensemble. Geophys. Res. Lett., 40, 579583, doi:10.1002/grl.50133.

    • Search Google Scholar
    • Export Citation
  • Sunyer, M., Madsen H. , and Ang P. , 2012: A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res., 103, 119128, doi:10.1016/j.atmosres.2011.06.011.

    • Search Google Scholar
    • Export Citation
  • Taylor, I. H., Burke E. , McColl L. , Falloon P. , Harris G. R. , and McNeall D. , 2013: The impact of climate mitigation on projections of future drought. Hydrol. Earth Syst. Sci., 17, 23392358, doi:10.5194/hess-17-2339-2013.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., Stouffer R. J. , and Meehl G. A. , 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and Knutti R. , 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, A365, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., Gobiet A. , and Heinrich G. , 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449468, doi:10.1007/s10584-011-0224-4.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., Beguería S. , and López-Moreno J. I. , 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, doi:10.1175/2009JCLI2909.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2012: Standardized precipitation index user guide. WMO-1090, 24 pp. [Available online at http://www.wmo.int/pages/prog/wcp/agm/publications/agm_proceedings.php.]

  • Wood, A. W., Leung L. R. , Sridhar V. , and Lettenmaier D. P. , 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
  • Yoo, J. Y., Song H. , Kim T.-W. , and Ahn J.-H. , 2013: Evaluation of short-term drought using daily standardized precipitation index and ROC analysis (in Korean with English abstract). J. Korean Soc. Eng., 33, 18511860, doi:10.12652/Ksce.2013.33.5.1851.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 740 294 9
PDF Downloads 516 153 5