Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7?

Guoqiang Tang State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Guoqiang Tang in
Current site
Google Scholar
PubMed
Close
,
Ziyue Zeng State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Ziyue Zeng in
Current site
Google Scholar
PubMed
Close
,
Di Long State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Di Long in
Current site
Google Scholar
PubMed
Close
,
Xiaolin Guo State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Xiaolin Guo in
Current site
Google Scholar
PubMed
Close
,
Bin Yong State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

Search for other papers by Bin Yong in
Current site
Google Scholar
PubMed
Close
,
Weihua Zhang AIRSER Lab and College of Resources and Environment, Southwest University, Chongqing, China

Search for other papers by Weihua Zhang in
Current site
Google Scholar
PubMed
Close
, and
Yang Hong State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China, and Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The goal of this study is to quantitatively intercompare the standard products of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) and its successor, the Global Precipitation Measurement (GPM) mission Integrated Multisatellite Retrievals for GPM (IMERG), with a dense gauge network over the midlatitude Ganjiang River basin in southeast China. In general, direct comparisons of the TMPA 3B42V7, 3B42RT, and GPM Day-1 IMERG estimates with gauge observations over an extended period of the rainy season (from May through September 2014) at 0.25° and daily resolutions show that all three products demonstrate similarly acceptable (~0.63) and high (0.87) correlation at grid and basin scales, respectively, although 3B42RT shows much higher overestimation. Both of the post-real-time corrections effectively reduce the bias of Day-1 IMERG and 3B42V7 to single digits of underestimation from 20+% overestimation of 3B42RT. The Taylor diagram shows that Day-1 IMERG and 3B42V7 are comparable at grid and basin scales. Hydrologic assessment with the Coupled Routing and Excess Storage (CREST) hydrologic model indicates that the Day-1 IMERG product performs comparably to gauge reference data. In many cases, the IMERG product outperforms TMPA standard products, suggesting a promising prospect of hydrologic utility and a desirable hydrologic continuity from TRMM-era product heritages to GPM-era IMERG products. Overall, this early study highlights that the Day-1 IMERG product can adequately substitute TMPA products both statistically and hydrologically, even with its limited data availability to date, in this well-gauged midlatitude basin. As more IMERG data are released, more studies to explore the potential of GPM-era IMERG in water, weather, and climate research are urgently needed.

Corresponding author address: Di Long, State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Room A207, Beijing 100084, China. E-mail: dlong@tsinghua.edu.cn

Abstract

The goal of this study is to quantitatively intercompare the standard products of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) and its successor, the Global Precipitation Measurement (GPM) mission Integrated Multisatellite Retrievals for GPM (IMERG), with a dense gauge network over the midlatitude Ganjiang River basin in southeast China. In general, direct comparisons of the TMPA 3B42V7, 3B42RT, and GPM Day-1 IMERG estimates with gauge observations over an extended period of the rainy season (from May through September 2014) at 0.25° and daily resolutions show that all three products demonstrate similarly acceptable (~0.63) and high (0.87) correlation at grid and basin scales, respectively, although 3B42RT shows much higher overestimation. Both of the post-real-time corrections effectively reduce the bias of Day-1 IMERG and 3B42V7 to single digits of underestimation from 20+% overestimation of 3B42RT. The Taylor diagram shows that Day-1 IMERG and 3B42V7 are comparable at grid and basin scales. Hydrologic assessment with the Coupled Routing and Excess Storage (CREST) hydrologic model indicates that the Day-1 IMERG product performs comparably to gauge reference data. In many cases, the IMERG product outperforms TMPA standard products, suggesting a promising prospect of hydrologic utility and a desirable hydrologic continuity from TRMM-era product heritages to GPM-era IMERG products. Overall, this early study highlights that the Day-1 IMERG product can adequately substitute TMPA products both statistically and hydrologically, even with its limited data availability to date, in this well-gauged midlatitude basin. As more IMERG data are released, more studies to explore the potential of GPM-era IMERG in water, weather, and climate research are urgently needed.

Corresponding author address: Di Long, State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Room A207, Beijing 100084, China. E-mail: dlong@tsinghua.edu.cn
Save
  • Ahrens, B., 2006: Distance in spatial interpolation of daily rain gauge data. Hydrol. Earth Syst. Sci., 10, 197208, doi:10.5194/hess-10-197-2006.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., Gebremichael M. , Ghebremichael L. T. , and Bayissa Y. A. , 2012: Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J. Hydrometeor., 13, 338350, doi:10.1175/2011JHM1292.1.

    • Search Google Scholar
    • Export Citation
  • Collischonn, B., Collischonn W. , and Tucci C. E. M. , 2008: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. J. Hydrol., 360, 207216, doi:10.1016/j.jhydrol.2008.07.032.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Anagnostou E. N. , and Borga M. , 2002: Improving radar-based estimation of rainfall over complex terrain. J. Appl. Meteor., 41, 1163, doi:10.1175/1520-0450(2002)041<1163:IRBEOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Futrell, J., and Coauthors, 2005: Water: Challenges at the intersection of human and natural systems. Tech. Rep. PNWD-3597, 50 pp., doi:10.2172/1046481.

  • Gebregiorgis, A. S., and Hossain F. , 2014: Estimation of satellite rainfall error variance using readily available geophysical features. IEEE Trans. Geosci. Remote Sens., 52, 288304, doi:10.1109/TGRS.2013.2238636.

    • Search Google Scholar
    • Export Citation
  • Habib, E., ElSaadani M. , and Haile A. T. , 2012: Climatology-focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile basin. J. Appl. Meteor. Climatol., 51, 21052121, doi:10.1175/JAMC-D-11-0252.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K.-L. , Sorooshian S. , and Gao X. , 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341853, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Adler R. F. , Hossain F. , Curtis S. , and Huffman G. J. , 2007: A first approach to global runoff simulation using satellite rainfall estimation. Water Resour. Res., 43, W08502, doi:10.1029/2006WR005739.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Chen S. , Xue X. , and Hodges G. , 2012: Global precipitation estimation and applications. Multiscale Hydrologic Remote Sensing: Perspectives and Applications, N.-B. Chang and Y. Hong, Eds., CRC Press, 371–386.

  • Hou, A. Y., Skofronick-Jackson G. , Kummerow C. D. , and Shepherd J. M. , 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 131–169.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., Yang D. , Li Z. , Mishra A. K. , Wang Y. , and Yang H. , 2014: Multi-scale evaluation of six high-resolution satellite monthly rainfall estimates over a humid region in China with dense rain gauges. Int. J. Remote Sens., 35, 12721294, doi:10.1080/01431161.2013.876118.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Bolvin D. T. , 2015: TRMM and Other Data Precipitation Data Set Documentation, NASA Global Change Master Directory Doc., Mesoscale Atmospheric Processes Laboratory, 44 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7.pdf.]

  • Huffman, G. J., and Coauthors, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Nelkin E. J. , 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer, 3–22.

  • Huffman, G. J., Bolvin D. T. , Braithwaite D. , Hsu K. , Joyce R. , and Xie P. , 2014: NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG) Algorithm Theoretical Basis Doc., version 4.4. NASA GSFC, 30 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.4.pdf.]

  • Huffman, G. J., Bolvin D. T. , and Nelkin E. J. , 2015: Integrated Multi-Satellite Retrievals for GPM (IMERG) Technical Documentation. Tech. Doc., NASA GSFC, 47 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.]

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khan, S. I., and Coauthors, 2011: Hydroclimatology of Lake Victoria region using hydrologic model and satellite remote sensing data. Hydrol. Earth Syst. Sci., 15, 107117, doi:10.5194/hess-15-107-2011.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and Huffman G. , 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, doi:10.1002/met.284.

  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Yang D. , and Hong Y. , 2013: Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol., 500, 157169, doi:10.1016/j.jhydrol.2013.07.023.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Yang D. , Gao B. , Jiao Y. , Hong Y. , and Xu T. , 2015: Multiscale hydrologic applications of the latest satellite precipitation products in the Yangtze River basin using a distributed hydrologic model. J. Hydrometeor., 16, 407426, doi:10.1175/JHM-D-14-0105.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., 1994: A two-layer variable infiltration capacity land surface representation for general circulation models. Ph.D. thesis, University of Washington, 208 pp.

  • Long, D., Shen Y. , Sun A. , Hong Y. , Longuevergne L. , Yang Y. , Li B. , and Chen L. , 2014: Drought and flood monitoring for a large karst plateau in southwest China using extended GRACE data. Remote Sens. Environ., 155, 145160, doi:10.1016/j.rse.2014.08.006.

    • Search Google Scholar
    • Export Citation
  • Meng, J., Li L. , Hao Z. , Wang J. , and Shao Q. , 2014: Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. J. Hydrol., 509, 320332, doi:10.1016/j.jhydrol.2013.11.049.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and Coulibaly P. , 2009: Developments in hydrometric network design: A review. Rev. Geophys., 47, RG2001, doi:10.1029/2007RG000243.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., 2004: Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. J. Geophys. Res., 109, D02103, doi:10.1029/2003JD003497.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., Mitra A. K. , Momin I. M. , Pai D. S. , Rajagopal E. N. , and Basu S. , 2015: Comparison of TMPA-3B42 versions 6 and 7 precipitation products with gauge-based data over India for the southwest monsoon period. J. Hydrometeor., 16, 346362, doi:10.1175/JHM-D-14-0024.1.

    • Search Google Scholar
    • Export Citation
  • Shen, X., Hong Y. , Zhang K. , and Hao Z. , 2015: Refine a distributed reservoir routing method to improve performance of the CREST model. J. Hydrol. Eng., in press.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., and Xiong A. , 2015: Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol., doi:10.1002/joc.4341, in press.

    • Search Google Scholar
    • Export Citation
  • Siddique-E-Akbor, A. H. M., Hossain F. , Sikder S. , Shum C. K. , Tseng S. , Yi Y. , Turk F. J. , and Limaye A. , 2014: Satellite precipitation data–driven hydrological modeling for water resources management in the Ganges, Brahmaputra, and Meghna basins. Earth Interact., 18, doi:10.1175/EI-D-14-0017.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K.-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, G., Li Z. , Xue X. , Hu Q. , and Hong Y. , 2015: A study of substitutability of TRMM remote sensing precipitation for gauge-based observation in Ganjiang River basin (in Chinese). Shuikexue Jinzhan, 26, 271277.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Peters-Lidard C. D. , 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and Miller S. D. , 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 10591069, doi:10.1109/TGRS.2004.841627.

    • Search Google Scholar
    • Export Citation
  • Verdin, J., Funk C. , Senay G. , and Choularton R. , 2005: Climate science and famine early warning. Philos. Trans. Roy. Soc. London, B360, 21552168, doi:10.1098/rstb.2005.1754.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Witold K. , 2008: Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Adv. Water Resour., 31, 10151023, doi:10.1016/j.advwatres.2008.04.007.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2011: The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol. Sci. J., 56, 8498, doi:10.1080/02626667.2010.543087.

    • Search Google Scholar
    • Export Citation
  • Wu, H., Adler R. F. , Hong Y. , Tian Y. , and Policelli F. , 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeor., 13, 12681284, doi:10.1175/JHM-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Xue, X., Hong Y. , Limaye A. S. , Gourley J. J. , Huffman G. J. , Khan S. I. , Dorji C. , and Chen S. , 2013: Statistical and hydrological evaluation of TRMM-based Multi-Satellite Precipitation Analysis over the Wangchu basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol., 499, 9199, doi:10.1016/j.jhydrol.2013.06.042.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Ren L. L. , Hong Y. , Wang J. H. , Gourley J. J. , Jiang S. H. , and Wang W. , 2010: Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res., 46, W07542, doi:10.1029/2009WR008965.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Hong Y. , Ren L. L. , Gourley J. J. , Huffman G. J. , Chen X. , Wang W. , and Khan S. , 2012: Assessment of evolving TRMM-based multi-satellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res., 117, D09108, doi:10.1029/2011JD017069.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Liu D. , Gourley J. J. , Tian Y. , Huffman G. J. , Ren L. , and Hong Y. , 2015: Global view of real-time TRMM Multisatellite Precipitation Analysis: Implication to its successor Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 96, 283296, doi:10.1175/BAMS-D-14-00017.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2015: Hydrometeorological analysis and remote sensing of extremes: Was the July 2012 Beijing flood event detectable and predictable by global satellite observing and global weather modeling systems? J. Hydrometeor., 16, 381395, doi:10.1175/JHM-D-14-0048.1.

    • Search Google Scholar
    • Export Citation
  • Zulkafli, Z., Buytaert W. , Onof C. , Manz B. , Tarnavsky E. , Lavado W. , and Guyot J.-L. , 2014: A comparative performance analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for hydrological applications over Andean–Amazon River basins. J. Hydrometeor., 15, 581592, doi:10.1175/JHM-D-13-094.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2576 997 112
PDF Downloads 1226 278 16