On the Quantification of Atmospheric Rivers Precipitation from Space: Composite Assessments and Case Studies over the Eastern North Pacific Ocean and the Western United States

Ali Behrangi Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Ali Behrangi in
Current site
Google Scholar
PubMed
Close
,
Bin Guan Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Bin Guan in
Current site
Google Scholar
PubMed
Close
,
Paul J. Neiman NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Paul J. Neiman in
Current site
Google Scholar
PubMed
Close
,
Mathias Schreier Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Mathias Schreier in
Current site
Google Scholar
PubMed
Close
, and
Bjorn Lambrigtsen Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Bjorn Lambrigtsen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric rivers (ARs) are often associated with extreme precipitation, which can lead to flooding or alleviate droughts. A decade (2003–12) of landfalling ARs impacting the North American west coast (between 32.5° and 52.5°N) is collected to assess the skill of five commonly used satellite-based precipitation products [T3B42, T3B42 real-time (T3B42RT), CPC morphing technique (CMORPH), PERSIANN, and PERSIANN–Cloud Classification System (CCS)] in capturing ARs’ precipitation rate and pattern. AR detection was carried out using a database containing twice-daily satellite-based integrated water vapor composite observations. It was found that satellite products are more consistent over ocean than land and often significantly underestimate precipitation rate over land compared to ground observations. Incorrect detection of precipitation from IR-based methods is prevalent over snow and ice surfaces where microwave estimates often show underestimation or missing data. Bias adjustment using ground observation is found very effective to improve satellite products, but it also raises concern regarding near-real-time applicability of satellite products for ARs. The analysis using individual case studies (6–8 January and 13–14 October 2009) and an ensemble of AR events suggests that further advancement in capturing orographic precipitation and precipitation over cold and frozen surfaces is needed to more reliably quantify AR precipitation from space.

Corresponding author address: Ali Behrangi, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., MS 233-304, Pasadena, CA 91109. E-mail: ali.behrangi@jpl.nasa.gov

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

Atmospheric rivers (ARs) are often associated with extreme precipitation, which can lead to flooding or alleviate droughts. A decade (2003–12) of landfalling ARs impacting the North American west coast (between 32.5° and 52.5°N) is collected to assess the skill of five commonly used satellite-based precipitation products [T3B42, T3B42 real-time (T3B42RT), CPC morphing technique (CMORPH), PERSIANN, and PERSIANN–Cloud Classification System (CCS)] in capturing ARs’ precipitation rate and pattern. AR detection was carried out using a database containing twice-daily satellite-based integrated water vapor composite observations. It was found that satellite products are more consistent over ocean than land and often significantly underestimate precipitation rate over land compared to ground observations. Incorrect detection of precipitation from IR-based methods is prevalent over snow and ice surfaces where microwave estimates often show underestimation or missing data. Bias adjustment using ground observation is found very effective to improve satellite products, but it also raises concern regarding near-real-time applicability of satellite products for ARs. The analysis using individual case studies (6–8 January and 13–14 October 2009) and an ensemble of AR events suggests that further advancement in capturing orographic precipitation and precipitation over cold and frozen surfaces is needed to more reliably quantify AR precipitation from space.

Corresponding author address: Ali Behrangi, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., MS 233-304, Pasadena, CA 91109. E-mail: ali.behrangi@jpl.nasa.gov

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save
  • Behrangi, A., Hsu K. , Imam B. , Sorooshian S. , Huffman G. J. , and Kuligowski R. J. , 2009: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 14141429, doi:10.1175/2009JHM1139.1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Imam B. , Hsu K. , Sorooshian S. , Bellerby T. J. , and Huffman G. J. , 2010: REFAME: Rain Estimation Using Forward-Adjusted Advection of Microwave Estimates. J. Hydrometeor., 11, 13051321, doi:10.1175/2010JHM1248.1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Lebsock M. , Wong S. , and Lambrigtsen B. , 2012: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, D20105, doi:10.1029/2012JD017979.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Tian Y. , Lambrigtsen B. H. , and Stephens G. L. , 2014: What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res., 50, 48934905, doi:10.1002/2013WR014566.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Gibson W. P. , Taylor G. H. , Johnson G. L. , and Pasteris P. , 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113, doi:10.3354/cr022099.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, doi:10.1111/j.1752-1688.2011.00546.x.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, doi:10.1175/JHM-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Redmond K. , and Cayan D. , 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 11021116, doi:10.1175/JHM-390.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. R. , 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Weng F. H. , Grody N. C. , and Zhao L. M. , 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 26692672, doi:10.1029/2000GL011665.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, doi:10.1109/TGRS.2012.2199121.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., Nieto R. , Vázquez M. , and Lavers D. A. , 2014: Atmospheric rivers: A mini-review. Front. Earth Sci., 2, doi:10.3389/feart.2014.00002.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Molotch N. P. , Waliser D. E. , Fetzer E. J. , and Neiman P. J. , 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Molotch N. P. , Waliser D. E. , Fetzer E. J. , and Neiman P. J. , 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, doi:10.1002/wrcr.20537.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., Smith E. A. , Kummerow C. D. , Iguchi T. , Farrar M. R. , Durden S. L. , Alves M. , and Olson W. S. , 1997: The TRMM ‘day-1’ radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799809.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. L. , Sorooshian S. , and Gao X. G. , 2004: Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341852, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., Gao X. G. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Bolvin D. T. , 2014: TRMM and other data precipitation data set documentation. NASA GSFC, 42 pp. [Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.]

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. , and Nelkin E. , 2015: Integrated Multi-Satellite Retrievals for GPM (IMERG) technical documentation. IMERG Tech. Doc., NASA GSFC, 48 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.]

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. R. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104, doi:10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J., Waliser D. E. , Neiman P. J. , Guan B. , Ryoo J.-M. , and Wick G. A. , 2013: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dyn., 40, 465474, doi:10.1007/s00382-012-1322-3.

    • Search Google Scholar
    • Export Citation
  • Kongoli, C., Pellegrino P. , Ferraro R. R. , Grody N. C. , and Meng H. , 2003: A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU). Geophys. Res. Lett., 30, 1756, doi:10.1029/2003GL017177.

    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3, 112130, doi:10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and Villarini G. , 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, doi:10.1002/grl.50636.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., Allan R. P. , Villarini G. , Lloyd-Hughes B. , Brayshaw D. J. , and Wade A. J. , 2013: Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett., 8, 034010, doi:10.1088/1748-9326/8/3/034010.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Zipser E. J. , 2009: “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767779, doi:10.1175/2008JCLI2641.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Neiman P. J. , Martner B. , White A. B. , Gottas D. J. , and Ralph F. M. , 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, doi:10.1175/2007JHM853.1.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., Yuter S. E. , White A. B. , Matrosov S. Y. , Kingsmill D. E. , and Ralph F. M. , 2008: Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band. J. Hydrometeor., 9, 408425, doi:10.1175/2007JHM924.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2012: Observations of wintertime U.S. West Coast precipitating systems with W-band satellite radar and other spaceborne instruments. J. Hydrometeor., 13, 223238, doi:10.1175/JHM-D-10-05025.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2013: Characteristics of landfalling atmospheric rivers inferred from satellite observations over the eastern North Pacific Ocean. Mon. Wea. Rev., 141, 37573768, doi:10.1175/MWR-D-12-00324.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Wick G. A. , Ralph F. M. , Martner B. E. , White A. B. , and Kingsmill D. E. , 2005: Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET: Geographic, interannual, and synoptic variability. Mon. Wea. Rev., 133, 11991223, doi:10.1175/MWR2919.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. D. , and Dettinger M. D. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Schick L. J. , Ralph F. M. , Hughes M. , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Kiladis G. N. , Weickman K. , and Reynolds D. W. , 2011: A multi-scale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Kida S. , Ashiwake H. , Kubota T. , and Aonashi K. , 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, doi:10.1175/JAMC-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., Forster C. , and Sodemann H. , 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Taniguchi, A., and Coauthors, 2013: Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan. J. Hydrometeor., 14, 18591871, doi:10.1175/JHM-D-13-047.1.

    • Search Google Scholar
    • Export Citation
  • Viale, M., and Nuñez M. N. , 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, doi:10.1175/2010JHM1284.1.

    • Search Google Scholar
    • Export Citation
  • Vila, D., Ferraro R. , and Joyce R. , 2007: Evaluation and improvement of AMSU precipitation retrievals. J. Geophys. Res., 112, D20119, doi:10.1029/2007JD008617.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., Mass C. F. , and Salathé E. P. Jr., 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, doi:10.1175/MWR-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., Mass C. F. , and Salathé E. P. Jr., 2015: Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, doi:10.1175/JHM-D-14-0080.1.

    • Search Google Scholar
    • Export Citation
  • Weng, F. Z., Zhao L. M. , Ferraro R. R. , Poe G. , Li X. F. , and Grody N. C. , 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 8068, doi:10.1029/2002RS002679.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, doi:10.1029/94GL01710.

  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 683 312 22
PDF Downloads 185 65 12