Contribution of Extreme Convective Storms to Rainfall in South America

K. L. Rasmussen Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by K. L. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
M. M. Chaplin Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by M. M. Chaplin in
Current site
Google Scholar
PubMed
Close
,
M. D. Zuluaga Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by M. D. Zuluaga in
Current site
Google Scholar
PubMed
Close
, and
R. A. Houze Jr. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by R. A. Houze Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The contribution of extreme convective storms to rainfall in South America is investigated using 15 years of high-resolution data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). Precipitation from three specific types of storms with extreme horizontal and vertical dimensions have been calculated and compared to the climatological rain. The tropical and subtropical regions of South America differ markedly in the influence of storms with extreme dimensions. The tropical regions, especially the Amazon basin, have aspects similar to oceanic convection. Convection in the subtropical regions, centered on La Plata basin, exhibits patterns consistent with storm life cycles initiating in the foothills of the Andes and growing into larger mesoscale convective systems that propagate to the east. In La Plata basin, convective storms with a large horizontal dimension contribute ~44% of the rain and the accumulated influence of all three types of storms with extreme characteristics produce ~95% of the total precipitation in the austral summer.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Current affiliation: Universidad Nacional de Colombia, Medellín, Colombia.

Corresponding author address: Kristen Lani Rasmussen, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: kristenr@ucar.edu

Abstract

The contribution of extreme convective storms to rainfall in South America is investigated using 15 years of high-resolution data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). Precipitation from three specific types of storms with extreme horizontal and vertical dimensions have been calculated and compared to the climatological rain. The tropical and subtropical regions of South America differ markedly in the influence of storms with extreme dimensions. The tropical regions, especially the Amazon basin, have aspects similar to oceanic convection. Convection in the subtropical regions, centered on La Plata basin, exhibits patterns consistent with storm life cycles initiating in the foothills of the Andes and growing into larger mesoscale convective systems that propagate to the east. In La Plata basin, convective storms with a large horizontal dimension contribute ~44% of the rain and the accumulated influence of all three types of storms with extreme characteristics produce ~95% of the total precipitation in the austral summer.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Current affiliation: Universidad Nacional de Colombia, Medellín, Colombia.

Corresponding author address: Kristen Lani Rasmussen, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: kristenr@ucar.edu
Save
  • Awaka, J., Iguchi T. , Kumagai H. , and Okamoto K. , 1997: Rain type classification algorithm for TRMM Precipitation Radar. IGARSS ’97: Remote Sensing—A Scientific Vision for Sustainable Development, Vol. 4, IEEE, 1633–1635, doi:10.1109/IGARSS.1997.608993.

  • Boccippio, D. J., Petersen W. A. , and Cecil D. J. , 2005: The tropical convective spectrum. Part I: Archetypal vertical structures. J. Climate, 18, 27442769, doi:10.1175/JCLI3335.1.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., Jones C. , and Leibmann B. , 2004: The South Atlantic Convergence Zone: Form, persistence, and relationships with intraseasonal and interannual activity and extreme rainfall. J. Climate, 17, 88108, doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., Mote T. L. , and Shepherd J. M. , 2009: The contribution of mesoscale convective complexes to rainfall across subtropical South America. J. Climate, 22, 45904605, doi:10.1175/2009JCLI2858.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Kane R. J. , and Chelius C. R. , 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901921, doi:10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., Wilton D. C. , and Smull B. F. , 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, doi:10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., Rasmussen K. L. , Medina S. , Brodzik S. R. , and Romatschke U. , 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298, doi:10.1175/2010BAMS3173.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., Rasmussen K. L. , Zuluaga M. D. , and Brodzik S. R. , 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission (TRMM) satellite. Rev. Geophys., 53, 9941021, doi:10.1002/2015RG000488.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Meneghini R. , Awaka J. , Kozu T. , and Okamoto K. , 2000: Rain profiling algorithm for the TRMM Precipitation Radar data. Adv. Space Res., 25, 973976, doi:10.1016/S0273-1177(99)00933-3.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y., 1992: Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part I: Characteristics of subtropical frontal zones. J. Meteor. Soc. Japan, 70, 813835.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latrubesse, E. M., and Brea D. , 2009: Floods in Argentina. Natural Hazards and Human-Exacerbated Disasters in Latin America, E. Latrubesse, Ed., Developments in Earth Surface Processes, Vol. 13, Elsevier, 333–349, doi:10.1016/S0928-2025(08)10016-5.

  • Liu, C., 2011: Rainfall contribution from precipitation systems with different sizes, intensities, and durations. J. Hydrometeor., 12, 394412, doi:10.1175/2010JHM1320.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2015: Comparison of precipitation estimates between version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products. Atmos. Res., 153, 119133, doi:10.1016/j.atmosres.2014.07.032.

    • Search Google Scholar
    • Export Citation
  • Matsudo, C. M., and Salio P. V. , 2011: Severe weather reports and proximity to deep convection over northern Argentina. Atmos. Res., 100, 523537, doi:10.1016/j.atmosres.2010.11.004.

    • Search Google Scholar
    • Export Citation
  • Mechoso, R. C., and Coauthors, 2001: Climatology and hydrology of the Plata basin. VAMOS Scientific Study Group on the Plata Basin Doc., 56 pp. [Available online at http://www.atmos.umd.edu/~berbery/lpb/science_plan.html.]

  • Mohr, K. I., Famiglietti J. S. , and Zipser E. J. , 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596606, doi:10.1175/1520-0450(1999)038<0596:TCTTRW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., Slayback D. , and Yager K. , 2014: Characteristics of precipitation features and annual rainfall during the TRMM era in the central Andes. J. Climate, 27, 39824001, doi:10.1175/JCLI-D-13-00592.1.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., Bell T. L. , and Xu L. , 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344, doi:10.1175/1520-0426(2002)019<1333:SOTDCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J., and Mo K. C. , 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, doi:10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and Houze R. A. Jr., 2011: Orogenic convection in South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, doi:10.1175/MWR-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., Choi S. L. , Zuluaga M. D. , and Houze R. A. Jr., 2013: TRMM precipitation bias in extreme storms in South America. Geophys. Res. Lett., 40, 34573461, doi:10.1002/grl.50651.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., Zuluaga M. D. , and Houze R. A. Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, doi:10.1002/2014GL061767.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., Hill A. J. , Toma V. E. , Zuluaga M. D. , Webster P. J. , and Houze, R. A. Jr., 2015: Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Quart. J. Roy. Meteor. Soc., 141, 12591276, doi:10.1002/qj.2433.

    • Search Google Scholar
    • Export Citation
  • Richey, J. E., Mertes L. A. K. , Dunne T. , Victoria R. L. , Forsberg B. R. , Tancredi A. C. N. S. , and Oliveira E. , 1989: Sources and routing of the Amazon River flood wave. Global Biogeochem. Cycles, 3, 191204, doi:10.1029/GB003i003p00191.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., Sherwood S. C. , Gerstle D. , Liu C. , and Kirshbaum D. J. , 2011: Exploring the land–ocean contrast in convective vigor using islands. J. Atmos. Sci., 68, 602618, doi:10.1175/2010JAS3558.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and Houze R. A. Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, doi:10.1175/2010JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and Houze R. A. Jr., 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, doi:10.1175/2010JHM1289.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and Houze R. A. Jr., 2013: Characteristics of precipitating convective systems accounting for the summer rainfall of tropical and subtropical South America. J. Hydrometeor., 14, 2546, doi:10.1175/JHM-D-12-060.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., Medina S. , and Houze R. A. Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Rozante, J. R., Moreira D. S. , de Goncalves L. G. , and Vila D. A. , 2010: Combining TRMM and surface observations of precipitation: Technique and validation over South America. Wea. Forecasting, 25, 885894, doi:10.1175/2010WAF2222325.1.

    • Search Google Scholar
    • Export Citation
  • Salio, P., Nicolini M. , and Zipser E. J. , 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, doi:10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Davis C. A. , and Ahijevych D. A. , 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 10661090, doi:10.1175/2009JAS3247.1.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., and Fritsch J. M. , 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, doi:10.1029/JD092iD08p09591.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6377, doi:10.1175/BAMS-87-1-63.

    • Search Google Scholar
    • Export Citation
  • Wall, C., Zipser E. J. , and Liu C. , 2014: An investigation of the aerosol indirect effect on convective intensity using satellite observations. J. Atmos. Sci., 71, 430447, doi:10.1175/JAS-D-13-0158.1.

    • Search Google Scholar
    • Export Citation
  • World Water Assessment Program, 2009: Water in a changing world. United Nations World Water Development Rep. 3, UNESCO Publishing, 318 pp.

  • Zipser, E. J., Liu C. , Cecil D. J. , Nesbitt S. W. , and Yorty D. P. , 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and Houze R. A. Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, doi:10.1175/JAS-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and Houze R. A. Jr., 2015: Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon. Wea. Rev., 143, 298316, doi:10.1175/MWR-D-14-00109.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 978 305 30
PDF Downloads 750 236 21