Hyperresolution Land Surface Modeling in the Context of SMAP Cal–Val

Camille Garnaud Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Camille Garnaud in
Current site
Google Scholar
PubMed
Close
,
Stéphane Bélair Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Stéphane Bélair in
Current site
Google Scholar
PubMed
Close
,
Aaron Berg Department of Geography, University of Guelph, Guelph, Ontario, Canada

Search for other papers by Aaron Berg in
Current site
Google Scholar
PubMed
Close
, and
Tracy Rowlandson Department of Geography, University of Guelph, Guelph, Ontario, Canada

Search for other papers by Tracy Rowlandson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the performance of Environment Canada’s Surface Prediction System (SPS) in comparison to in situ observations from the Brightwater Creek soil moisture observation network with respect to soil moisture and soil temperature. To do so, SPS is run at hyperresolution (100 m) over a small domain in southern Saskatchewan (Canada) during the summer of 2014. It is shown that with initial conditions and surface condition forcings based on observations, SPS can simulate soil moisture and soil temperature evolution over time with high accuracy (mean bias of 0.01 m3 m−3 and −0.52°C, respectively). However, the modeled spatial variability is generally much weaker than observed. This is likely related to the model’s use of uniform soil texture, the lack of small-scale orography, as well as a predefined crop growth cycle in SPS. Nonetheless, the spatial averages of simulated soil conditions over the domain are very similar to those observed, suggesting that both are representative of large-scale conditions. Thus, in the context of the National Aeronautics and Space Administration’s (NASA) Soil Moisture Active Passive (SMAP) project, this study shows that both simulated and in situ observations can be upscaled to allow future comparison with upcoming satellite data.

Denotes Open Access content.

Corresponding author address: Dr. Camille Garnaud, Meteorological Research Division, Environment Canada, 2121 Trans-Canada Highway, 5th Floor, Dorval QC H9P 1J3, Canada. E-mail: camille.garnaud@ec.gc.ca

Abstract

This study explores the performance of Environment Canada’s Surface Prediction System (SPS) in comparison to in situ observations from the Brightwater Creek soil moisture observation network with respect to soil moisture and soil temperature. To do so, SPS is run at hyperresolution (100 m) over a small domain in southern Saskatchewan (Canada) during the summer of 2014. It is shown that with initial conditions and surface condition forcings based on observations, SPS can simulate soil moisture and soil temperature evolution over time with high accuracy (mean bias of 0.01 m3 m−3 and −0.52°C, respectively). However, the modeled spatial variability is generally much weaker than observed. This is likely related to the model’s use of uniform soil texture, the lack of small-scale orography, as well as a predefined crop growth cycle in SPS. Nonetheless, the spatial averages of simulated soil conditions over the domain are very similar to those observed, suggesting that both are representative of large-scale conditions. Thus, in the context of the National Aeronautics and Space Administration’s (NASA) Soil Moisture Active Passive (SMAP) project, this study shows that both simulated and in situ observations can be upscaled to allow future comparison with upcoming satellite data.

Denotes Open Access content.

Corresponding author address: Dr. Camille Garnaud, Meteorological Research Division, Environment Canada, 2121 Trans-Canada Highway, 5th Floor, Dorval QC H9P 1J3, Canada. E-mail: camille.garnaud@ec.gc.ca
Save
  • Bélair, S., Crevier L.-P. , Mailhot J. , Bilodeau B. , and Delage Y. , 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Brown R. , Mailhot J. , Bilodeau B. , and Crevier L.-P. , 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, A., Lintner B. R. , Findell K. L. , Malyshev S. , Loikith P. C. , and Gentine P. , 2014: Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Climate, 27, 79767993, doi:10.1175/JCLI-D-13-00591.1.

    • Search Google Scholar
    • Export Citation
  • Bernier, N., Bélair S. , Bilodeau B. , and Tong L. , 2014: Assimilation and high resolution forecasts of surface and near surface conditions for the 2010 Vancouver winter Olympic and Paralympic Games. Pure Appl. Geophys., 171, 243256, doi:10.1007/s00024-012-0542-0.

    • Search Google Scholar
    • Export Citation
  • Bonan, G., 2008: Ecological Climatology: Concepts and Applications. 2nd ed., Cambridge University Press, 563 pp.

  • Carrera, M., Bélair S. , Fortin V. , Bilodeau B. , Charpentier D. , and Doré I. , 2010: Evaluation of snowpack simulations over the Canadian Rockies with an experimental hydrometeorological modeling system. J. Hydrometeor., 11, 11231140, doi:10.1175/2010JHM1274.1.

    • Search Google Scholar
    • Export Citation
  • Champagne, C., Berg A. , Belanger J. , McNairn H. , and Jeu R. D. , 2010: Evaluation of soil moisture derived from passive microwave remote sensing over agricultural sites in Canada using ground-based soil moisture monitoring networks. Int. J. Remote Sens., 31, 36693690, doi:10.1080/01431161.2010.483485.

    • Search Google Scholar
    • Export Citation
  • Chaney, N., Roundy J. , Herrera-Estrada J. , and Wood E. , 2015: High-resolution modeling of the spatial heterogeneity of soil moisture: Applications in network design. Water Resour. Res., 51, 619638, doi:10.1002/2013WR014964.

    • Search Google Scholar
    • Export Citation
  • Crow, W., Ryu D. , and Famiglietti J. , 2005: Upscaling of field-scale soil moisture measurements using distributed land surface modeling. Adv. Water Resour., 28, 114, doi:10.1016/j.advwatres.2004.10.004.

    • Search Google Scholar
    • Export Citation
  • Cutforth, H. W., and Coauthors, 2013: Comparing rooting characteristics and soil water withdrawal patterns of wheat with alternative oilseed and pulse crops grown in the semiarid Canadian Prairie. Can. J. Soil Sci., 93, 147160, doi:10.4141/cjss2012-081.

    • Search Google Scholar
    • Export Citation
  • Djamai, N., Magagi R. , Goita K. , Hosseini M. , Cosh M. , Berg A. , and Toth B. , 2015: Evaluation of SMOS soil moisture products over the CanEx-SM10 area. J. Hydrol., 520, 254267, doi:10.1016/j.jhydrol.2014.11.026.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W., Scipal K. , Parinussa R. , Liu Y. , Wagner W. , de Jeu R. , and Naeimi V. , 2010: Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci., 14, 26052616, doi:10.5194/hess-14-2605-2010.

    • Search Google Scholar
    • Export Citation
  • Leroyer, S., Bélair S. , Mailhot J. , and Strachan I. B. , 2011: Microscale numerical prediction over Montreal with the Canadian external urban modeling system. J. Appl. Meteor. Climatol., 50, 24102428, doi:10.1175/JAMC-D-11-013.1.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., Brasnett B. , and Gagnon S. , 2007: A Canadian Precipitation Analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117, doi:10.3137/ao.450101.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2006: The 15-km version of the Canadian regional forecast system. Atmos.–Ocean, 44, 133149, doi:10.3137/ao.440202.

    • Search Google Scholar
    • Export Citation
  • Miralles, D., Crow W. , and Cosh M. , 2010: Estimating spatial sampling errors in coarse-scale soil moisture estimates derived from point-scale observations. J. Hydrometeor., 11, 14231429, doi:10.1175/2010JHM1285.1.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rochoux, M., Bélair S. , Abrahamowicz M. , and Pellerin P. , 2015: Subgrid-scale variability for thermodynamic variables in an offline land surface prediction system. J. Hydrometeor., doi:10.1175/JHM-D-15-0016.1, in press.

  • Scipal, K., Holmes T. , de Jeu R. , Naeimi V. , and Wagner W. , 2008: A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett., 35, L24403, doi:10.1029/2008GL035599.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Lehner E. B. J. I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Stanhill, G., 1957: The effect of differences in soil-moisture status on plant growth: A review and analysis of soil-moisture experiments. Soil Sci., 84, 205214, doi:10.1097/00010694-195709000-00003.

    • Search Google Scholar
    • Export Citation
  • Teuling, A., and Coauthors, 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722727, doi:10.1038/ngeo950.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 276 136 14
PDF Downloads 105 42 1