Two Simple Metrics for Quantifying Rainfall Intermittency: The Burstiness and Memory of Interamount Times

Marc Schleiss Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Marc Schleiss in
Current site
Google Scholar
PubMed
Close
and
James A. Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation displays a remarkable variability in space and time. An important yet poorly documented aspect of this variability is intermittency. In this paper, a new way of quantifying intermittency based on the burstiness B and memory M of interamount times is proposed. The method is applied to a unique dataset of 325 high-resolution rain gauges in the United States and Europe. Results show that the MB diagram provides useful insight into local precipitation patterns and can be used to study intermittency over a wide range of temporal scales. It is found that precipitation tends to be more intermittent in warm and dry climates with the largest observed values in the southwest of the United States (i.e., California, Nevada, Arizona, and Texas). Low-to-moderate values are reported for the northeastern United States, the United Kingdom, the Netherlands, and Germany. In the second half of the paper, the new metrics are applied to daily rainfall data for 1954–2013 to investigate regional trends in intermittency due to climate variability and global warming. No evidence is found of a global shift in intermittency but a weak trend toward burstier precipitation patterns and longer dry spells in the south of Europe (i.e., Portugal, Spain, and Italy) and an opposite trend toward steadier and more correlated precipitation patterns in Norway, Sweden, and Finland is observed.

Corresponding author address: Marc Schleiss, Department of Civil and Environmental Engineering, Princeton University, Engineering Quadrangle, Princeton, NJ 08540. E-mail: schleiss.marc@gmail.com

Abstract

Precipitation displays a remarkable variability in space and time. An important yet poorly documented aspect of this variability is intermittency. In this paper, a new way of quantifying intermittency based on the burstiness B and memory M of interamount times is proposed. The method is applied to a unique dataset of 325 high-resolution rain gauges in the United States and Europe. Results show that the MB diagram provides useful insight into local precipitation patterns and can be used to study intermittency over a wide range of temporal scales. It is found that precipitation tends to be more intermittent in warm and dry climates with the largest observed values in the southwest of the United States (i.e., California, Nevada, Arizona, and Texas). Low-to-moderate values are reported for the northeastern United States, the United Kingdom, the Netherlands, and Germany. In the second half of the paper, the new metrics are applied to daily rainfall data for 1954–2013 to investigate regional trends in intermittency due to climate variability and global warming. No evidence is found of a global shift in intermittency but a weak trend toward burstier precipitation patterns and longer dry spells in the south of Europe (i.e., Portugal, Spain, and Italy) and an opposite trend toward steadier and more correlated precipitation patterns in Norway, Sweden, and Finland is observed.

Corresponding author address: Marc Schleiss, Department of Civil and Environmental Engineering, Princeton University, Engineering Quadrangle, Princeton, NJ 08540. E-mail: schleiss.marc@gmail.com
Save
  • Alyamani, M. S., and Sen Z. , 1997: Spatiotemporal dry and wet spell duration distributions in southwestern Saudi Arabia. Theor. Appl. Climatol., 57, 165179, doi:10.1007/BF00863611.

    • Search Google Scholar
    • Export Citation
  • Anagnostopoulou, C., Maheras P. , Karacostas T. , and Vafiadis M. , 2003: Spatial and temporal analysis of dry spells in Greece. Theor. Appl. Climatol., 74, 7791, doi:10.1007/s00704-002-0713-5.

    • Search Google Scholar
    • Export Citation
  • Barancourt, C., Creutin J.-D. , and Rivoirard J. , 1992: A method for delineating and estimating rainfall fields. Water Resour. Res., 28, 11331144, doi:10.1029/91WR02896.

    • Search Google Scholar
    • Export Citation
  • Baudena, M., Boni G. , Ferraris L. , von Hardenberg J. , and Provenzale A. , 2007: Vegetation response to rainfall intermittency in drylands: Results from a simple ecohydrological box model. Adv. Water Resour., 30, 13201328, doi:10.1016/j.advwatres.2006.11.006.

    • Search Google Scholar
    • Export Citation
  • Chatfield, C., 1966: Wet and dry spells. Weather, 21, 308310, doi:10.1002/j.1477-8696.1966.tb02881.x.

  • Cindrić, K., Pasarić Z. , and Gajić-Čapka M. , 2010: Spatial and temporal analysis of dry spells in Croatia. Theor. Appl. Climatol., 102, 171184, doi:10.1007/s00704-010-0250-6.

    • Search Google Scholar
    • Export Citation
  • Cowpertwait, P. S. P., 1995: A generalized spatial–temporal model of rainfall based on a clustered point process. Proc. Roy. Soc. London, A450, 163175, doi:10.1098/rspa.1995.0077.

    • Search Google Scholar
    • Export Citation
  • Cox, D. R., and Isham V. , 1988: A simple spatial–temporal model of rainfall. Proc. Roy. Soc. London, A415, 317328, doi:10.1098/rspa.1988.0016.

    • Search Google Scholar
    • Export Citation
  • De Michele, C., and Salvadori G. , 2003: A Generalized Pareto intensity–duration model of storm rainfall exploiting 2-Copulas. J. Geophys. Res., 108, 21562202, doi:10.1029/2002JD002534.

    • Search Google Scholar
    • Export Citation
  • De Michele, C., and Ignaccolo M. , 2013: New perspectives on rainfall from a discrete view. Hydrol. Processes, 27, 23792382, doi:10.1002/hyp.9782.

    • Search Google Scholar
    • Export Citation
  • Deni, S., Suhaila J. , Wan Zin W. , and Jemain A. , 2010: Spatial trends of dry spells over peninsular Malaysia during monsoon seasons. Theor. Appl. Climatol., 99, 357371, doi:10.1007/s00704-009-0147-4.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, doi:10.1175/BAMS-D-12-00170.1.

    • Search Google Scholar
    • Export Citation
  • Foufoula-Georgiou, E., and Lettenmaier D. , 1987: A Markov renewal model for rainfall occurrences. Water Resour. Res., 23, 875884, doi:10.1029/WR023i005p00875.

    • Search Google Scholar
    • Export Citation
  • Gires, A., Onof C. , Maksimovic C. , Schertzer D. , Tchiguirinskaia I. , and Simoes N. , 2012a: Quantifying the impact of small scale unmeasured rainfall variability on urban runoff through multifractal downscaling: A case study. J. Hydrol., 442, 117128, doi:10.1016/j.jhydrol.2012.04.005.

    • Search Google Scholar
    • Export Citation
  • Gires, A., Tchiguirinskaia I. , Schertzer D. , and Lovejoy S. , 2012b: Influence of the zero-rainfall on the assessment of the multifractal parameters. Adv. Water Resour., 45, 1325, doi:10.1016/j.advwatres.2012.03.026.

    • Search Google Scholar
    • Export Citation
  • Gires, A., Tchiguirinskaia I. , Schertzer D. , and Lovejoy S. , 2013: Development and analysis of a simple model to represent the zero rainfall in a universal multifractal framework. Nonlinear Processes Geophys., 20, 343356, doi:10.5194/npg-20-343-2013.

    • Search Google Scholar
    • Export Citation
  • Goh, K.-I., and Barabási A.-L. , 2008: Burstiness and memory in complex systems. Europhys. Lett., 81, 48002, doi:10.1209/0295-5075/81/48002.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Knight R. W. , 2008: Prolonged dry episodes over the conterminous United States: New tendencies emerging during the last 40 years. J. Climate, 21, 18501862, doi:10.1175/2007JCLI2013.1.

    • Search Google Scholar
    • Export Citation
  • Haile, A. T., Rientjes T. H. M. , Habib E. , Jetten V. , and Gebremichael M. , 2011: Rain event properties at the source of the Blue Nile River. Hydrol. Earth Syst. Sci., 15, 10231034, doi:10.5194/hess-15-1023-2011.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2014: Intermittency, autoregression and censoring: A first-order AR model for daily precipitation. Meteor. Appl., 21, 384397, doi:10.1002/met.1353.

    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and Snyder P. K. , 2014: Examining future changes in the character of central U.S. warm-season precipitation using dynamical downscaling. J. Geophys. Res. Atmos., 119, 13 11613 136, doi:10.1002/2014JD022575.

    • Search Google Scholar
    • Export Citation
  • Hughes, P. Y., Mason E. H. , Karl T. R. , and Brower W. A. , 1992: United States Historical Climatology Network daily temperature and precipitation data. Tech. Rep. ORNL/CDIAC-50, NDP-042, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 140 pp.

  • Ignaccolo, M., De Michele C. , and Bianco S. , 2009: The droplike nature of rain and its invariant statistical properties. J. Hydrometeor., 10, 7995, doi:10.1175/2008JHM975.1.

    • Search Google Scholar
    • Export Citation
  • Jakubowski, W., 1988: A daily rainfall occurrence process. Stochastic Hydrol. Hydraul., 2, 116, doi:10.1007/BF01544190.

  • Klein Tank, A. M. G., and Coauthors, 2002: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol., 22, 14411453, doi:10.1002/joc.773.

    • Search Google Scholar
    • Export Citation
  • Kletter, A. Y., Hardenberg J. , Meron E. , and Provenzale A. , 2009: Patterned vegetation and rainfall intermittency. J. Theor. Biol., 256, 574583, doi:10.1016/j.jtbi.2008.10.020.

    • Search Google Scholar
    • Export Citation
  • Kumar, P., and Foufoula-Georgiou E. , 1994: Characterizing multiscale variability of zero intermittency in spatial rainfall. J. Appl. Meteor., 33, 15161525, doi:10.1175/1520-0450(1994)033<1516:CMVOZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and Siddani R. K. , 2011: Scale dependence of spatiotemporal intermittency of rain. Water Resour. Res., 47, W08522, doi:10.1029/2010WR010070.

    • Search Google Scholar
    • Export Citation
  • Kutiel, H., Luković J. , and Burić D. , 2015: Spatial and temporal variability of rain-spells characteristics in Serbia and Montenegro. Int. J. Climatol., 35, 16111624, doi:10.1002/joc.4080.

    • Search Google Scholar
    • Export Citation
  • Lavergnat, J., and Golé P. , 1998: A stochastic raindrop time distribution model. J. Appl. Meteor., 37, 805818, doi:10.1175/1520-0450(1998)037<0805:ASRTDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mascaro, G., Deidda R. , and Hellies M. , 2013: On the nature of rainfall intermittency as revealed by different metrics and sampling approaches. Hydrol. Earth Syst. Sci., 17, 355369, doi:10.5194/hess-17-355-2013.

    • Search Google Scholar
    • Export Citation
  • Molini, A., La Barbera P. , and Lanza L. G. , 2002: On the properties of stochastic intermittency in rainfall processes. Water Sci. Technol., 45, 3540.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., Anagnostou E. N. , Borga M. , Vivoni E. R. , and Papadopoulos A. , 2011: Sensitivity of a mountain basin flash flood to initial wetness condition and rainfall variability. J. Hydrol., 402, 165178, doi:10.1016/j.jhydrol.2010.12.020.

    • Search Google Scholar
    • Export Citation
  • Olsson, J., Niemczynowicz J. , and Berndtsson R. , 1993: Fractal analysis of high-resolution rainfall time series. J. Geophys. Res., 98, 23 26523 274, doi:10.1029/93JD02658.

    • Search Google Scholar
    • Export Citation
  • Onof, C., Chandler R. E. , Kakou A. , Northrop P. , Wheater H. S. , and Isham V. , 2000: Rainfall modelling using Poisson-cluster processes: A review of developments. Stochastic Environ. Res. Risk Assess., 14, 384411, doi:10.1007/s004770000043.

    • Search Google Scholar
    • Export Citation
  • Ormsbee, L. E., 1989: Rainfall disaggregation model for continuous hydrological modeling. J. Hydraul. Eng., 115, 507525, doi:10.1061/(ASCE)0733-9429(1989)115:4(507).

    • Search Google Scholar
    • Export Citation
  • Pavlopoulos, H., and Gritsis J. , 1999: Wet and dry epoch durations of spatially averaged rain rate, their probability distributions and scaling properties. Environ. Ecol. Stat., 6, 351380, doi:10.1023/A:1009616018874.

    • Search Google Scholar
    • Export Citation
  • Pegram, G. G. S., and Clothier A. N. , 2001: High resolution space time modelling of rainfall: The String of Beads model. J. Hydrol., 241, 2641, doi:10.1016/S0022-1694(00)00373-5.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., Henderson-Sellers A. , and Yang Z.-L. , 1990: Sensitivity of regional climates to localized precipitation in global models. Nature, 346, 734737, doi:10.1038/346734a0.

    • Search Google Scholar
    • Export Citation
  • Rajah, K., O’Leary T. , Turner A. , Petrakis G. , Leonard M. , and Westra S. , 2014: Changes to the temporal distribution of daily precipitation. Geophys. Res. Lett., 41, 88878894, doi:10.1002/2014GL062156.

    • Search Google Scholar
    • Export Citation
  • Ramesh, N. I., Thayakaran R. , and Onof C. , 2013: Multi-site doubly stochastic Poisson process models for fine-scale rainfall. Stochastic Environ. Res. Risk Assess., 27, 13831396, doi:10.1007/s00477-012-0674-x.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., Cox D. R. , and Isham V. , 1987: Some models for rainfall based on stochastic point processes. Proc. Roy. Soc. London, A410, 269288, doi:10.1098/rspa.1987.0039.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., Cox D. R. , and Isham V. , 1988: A point process model for rainfall: Further developments. Proc. Roy. Soc. London, A417, 283298, doi:10.1098/rspa.1988.0061.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., Biaou A. , Chauvin F. , Schertzer D. , and Lovejoy S. , 2008: Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. C. R. Geosci., 340, 431440, doi:10.1016/j.crte.2008.05.002.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Sinoga, J. D., Garcia-Marin R. , Gabarron-Galeote M. A. , and Martinez-Murillo J. F. , 2012: Analysis of dry periods along a pluviometric gradient in Mediterranean southern Spain. Int. J. Climatol., 32, 15581571, doi:10.1002/joc.2376.

    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and Lovejoy S. , 2011: Multifractals, generalized scale invariance and complexity in geophysics. Int. J. Bifurcat. Chaos, 21, 34173456, doi:10.1142/S0218127411030647.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M., Jaffrain J. , and Berne A. , 2011: Statistical analysis of rainfall intermittency at small spatial and temporal scales. Geophys. Res. Lett., 38, L18403, doi:10.1029/2011GL049000.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M., Chamoun S. , and Berne A. , 2014: Stochastic simulation of intermittent rainfall using the concept of dry drift. Water Resour. Res., 50, 23292349, doi:10.1002/2013WR014641.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., and Frei C. , 2005: Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int. J. Climatol., 25, 753771, doi:10.1002/joc.1179.

    • Search Google Scholar
    • Export Citation
  • Schmitt, F., Vannitsem S. , and Barbosa A. , 1998: Modeling of rainfall time series using two-state renewal processes and multifractals. J. Geophys. Res., 103, 23 18123 193, doi:10.1029/98JD02071.

    • Search Google Scholar
    • Export Citation
  • Serra, C., Martínez M. D. , Lana X. , and Burgueño A. , 2013: European dry spell length distributions, years 1951–2000. Theor. Appl. Climatol., 114, 531551, doi:10.1007/s00704-013-0857-5.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1993: Marked point process models of raindrop-size distributions. J. Appl. Meteor., 32, 284296, doi:10.1175/1520-0450(1993)032<0284:MPPMOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suter, S., Konzelmann T. , Mühlhäuser C. , Begert M. , and Heimo A. , 2006: SwissMetNet—The new automatic meteorological network of Switzerland: Transition from old to new network, data management and first results. Proc. 4th Int. Conf. on Experiences with Automatic Weather Stations, Lisbon, Portugal.

  • Trenberth, K. E., Dai A. , Rasmussen R. M. , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Tweedie, M. C. K., 1984: An index which distinguishes between some important exponential families. Statistics: Applications and New Directions, J. K. Ghosh and J. Roy, Eds., Indian Statistical Institute, 579–604.

  • Veneziano, D., and Lepore C. , 2012: The scaling of temporal rainfall. Water Resour. Res., 48, W08516, doi:10.1029/2012WR012105.

  • Verrier, S., Mallet C. , and Barthès L. , 2011: Multiscaling properties of rain in the time domain, taking into account rain support biases. J. Geophys. Res., 116, D20119, doi:10.1029/ 2011JD015719.

    • Search Google Scholar
    • Export Citation
  • Weiss, L. L., 1964: Sequences of wet or dry days described by a Markov chain probability model. Mon. Wea. Rev., 92, 169176, doi:10.1175/1520-0493(1964)092<0169:SOWODD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, C. N., Jr., Menne M. J. , Vose R. S. , and Easterling D. R. , 2006: United States Historical Climatology Network daily temperature, precipitation, and snow data. ORNL/CDIAC-118, NDP-070, Oak Ridge National Laboratory, Oak Ridge, TN, doi:10.3334/CDIAC/cli.ndp070.

  • Zolina, O., Simmer C. , Belyaev K. , Gulev S. K. , and Koltermann P. , 2013: Changes in the duration of European wet and dry spells during the last 60 years. J. Climate, 26, 20222047, doi:10.1175/JCLI-D-11-00498.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 998 286 9
PDF Downloads 881 238 2