Surface Solar Radiation in North America: A Comparison of Observations, Reanalyses, Satellite, and Derived Products

Andrew G. Slater National Snow and Ice Data Center, CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Andrew G. Slater in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of daily surface solar or shortwave radiation data from over 4000 stations have been gathered, covering much of the continental United States as well as portions of Alberta and British Columbia, Canada. The quantity of data increases almost linearly from 1998, when only several hundred stations had data. A quality-control procedure utilizing threshold values along with computing the clear-sky radiation envelope for individual stations was implemented to both screen bad data and rescue informative data. Over two-thirds of the observations are seen as acceptable. There are 15 different surface solar radiation products assessed relative to observations, including reanalyses [Twentieth-Century Reanalysis (20CR), CFS Reanalysis and Reforecast (CFSRR), ERA-Interim, Japanese 55-year Reanalysis Project (JRA-55), MERRA, NARR, and NCEP–NCAR Reanalysis 1 (NCEP-1)], derived products [observations from the CRU and NCEP-1 (CRU–NCEP); Daily Surface Weather and Climatological Summaries (Daymet); Global Land Data Assimilation System, version 1 (GLDAS-1); Global Soil Wetness Project Phase 3 (GSWP3); Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP); and phase 2 of the North American Land Data Assimilation System (NLDAS-2)], and two satellite products (CERES and GOES). All except the CERES product have daily or finer temporal resolution. The RMSE of spatial biases is greater than 18 W m−2 for 13 of the 15 products over the summer season (June–August). None of the daily resolution products fulfill all three desirable criteria of low (<5%) annual or seasonal bias, high correlation with observed cloudiness, and correct distribution of clear-sky radiation. Some products display vestiges of underlying algorithm issues [e.g., from the Mountain Microclimate Simulation Model, version 4.3 (MTCLIM 4.3)] or bias-correction methods. A new bias-correction method is introduced that preserves clear-sky radiation values and better replicates cloudiness statistics. The current quantity of data over the continental United States suggests that a solar radiation product based on, or enhanced with, observations is feasible.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0087.s1.

Corresponding author address: Andrew G. Slater, National Snow and Ice Data Center, CIRES, University of Colorado Boulder, Campus Box 449, Boulder, CO 80309-0449. E-mail: aslater@colorado.edu

Abstract

Observations of daily surface solar or shortwave radiation data from over 4000 stations have been gathered, covering much of the continental United States as well as portions of Alberta and British Columbia, Canada. The quantity of data increases almost linearly from 1998, when only several hundred stations had data. A quality-control procedure utilizing threshold values along with computing the clear-sky radiation envelope for individual stations was implemented to both screen bad data and rescue informative data. Over two-thirds of the observations are seen as acceptable. There are 15 different surface solar radiation products assessed relative to observations, including reanalyses [Twentieth-Century Reanalysis (20CR), CFS Reanalysis and Reforecast (CFSRR), ERA-Interim, Japanese 55-year Reanalysis Project (JRA-55), MERRA, NARR, and NCEP–NCAR Reanalysis 1 (NCEP-1)], derived products [observations from the CRU and NCEP-1 (CRU–NCEP); Daily Surface Weather and Climatological Summaries (Daymet); Global Land Data Assimilation System, version 1 (GLDAS-1); Global Soil Wetness Project Phase 3 (GSWP3); Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP); and phase 2 of the North American Land Data Assimilation System (NLDAS-2)], and two satellite products (CERES and GOES). All except the CERES product have daily or finer temporal resolution. The RMSE of spatial biases is greater than 18 W m−2 for 13 of the 15 products over the summer season (June–August). None of the daily resolution products fulfill all three desirable criteria of low (<5%) annual or seasonal bias, high correlation with observed cloudiness, and correct distribution of clear-sky radiation. Some products display vestiges of underlying algorithm issues [e.g., from the Mountain Microclimate Simulation Model, version 4.3 (MTCLIM 4.3)] or bias-correction methods. A new bias-correction method is introduced that preserves clear-sky radiation values and better replicates cloudiness statistics. The current quantity of data over the continental United States suggests that a solar radiation product based on, or enhanced with, observations is feasible.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0087.s1.

Corresponding author address: Andrew G. Slater, National Snow and Ice Data Center, CIRES, University of Colorado Boulder, Campus Box 449, Boulder, CO 80309-0449. E-mail: aslater@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.97 MB)
Save
  • Anderson, E. A., 1973: National Weather Service River Forecast System—Snow accumulation and ablation model. NOAA Tech. Memo. NWS HYDRO-17, 87 pp. [Available online at ftp://ftp.wcc.nrcs.usda.gov/wntsc/H&H/snow/AndersonHYDRO17.pdf.]

  • Anderson, E. A., 2006: Snow accumulation and ablation model—SNOW-17. User’s manual, NWS, 61 pp. [Available online at http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/22snow17.pdf.]

  • Annandale, J., Jovanovic N. , Benade N. , and Allen R. , 2002: Software for missing data error analysis of Penman–Monteith reference evapotranspiration. Irrig. Sci., 21, 5767, doi:10.1007/s002710100047.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, A. A., Famiglietti J. S. , Walker J. P. , and Houser P. R. , 2003: Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. Geophys. Res., 108, 4490, doi:10.1029/2002JD003334.

    • Search Google Scholar
    • Export Citation
  • Berliand, T., 1960: Method of climatological calculation of global radiation. Meteor. Gidrol., 6, 912.

  • Bird, R., and Hulstrom R. , 1981: A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. SERI Tech. Rep. 642-761, Solar Energy Research Institute, Golden, CO, 38 pp. [Available online at http://rredc.nrel.gov/solar/pubs/pdfs/tr-642-761.pdf.]

  • Bohn, T. J., Livneh B. , Oyler J. W. , Running S. W. , Nijssen B. , and Lettenmaier D. P. , 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, doi:10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Boilley, A., and Wald L. , 2015: Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface. Renew. Energy, 75, 135143, doi:10.1016/j.renene.2014.09.042.

    • Search Google Scholar
    • Export Citation
  • Charlock, T., Rose F. , Rutan D. , Alberta T. , Coleman L. , Smith G. , Smith M. , and Bess T. , 1997: Clouds and the Earth’s Radiant Energy System (CERES) algorithm theoretical basis document: Compute surface and atmospheric fluxes (subsystem 5.0). NASA Reference Publ., 84 pp. [Available online at http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s5.0.pdf.]

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Cressman, G., 1959: An operational objective analysis scheme. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and McPhaden M. J. , 1997: The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J. Geophys. Res., 102, 85338553, doi:10.1029/97JC00020.

    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., Staylor W. F. , Gupta S. K. , and Denn F. M. , 1988: Estimation of surface insolation using sun-synchronous satellite data. J. Climate, 1, 820835, doi:10.1175/1520-0442(1988)001<0820:EOSIUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Decker, M., Brunke M. A. , Wang Z. , Sakaguchi K. , Zeng X. , and Bosilovich M. G. , 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944, doi:10.1175/JCLI-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Elder, K., Cline D. , Liston G. E. , and Armstrong R. , 2009: NASA Cold Land Processes Experiment (CLPX 2002/03): Field measurements of snowpack properties and soil moisture. J. Hydrometeor., 10, 320329, doi:10.1175/2008JHM877.1.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., Evan A. T. , Freitag H. P. , Brown S. , and McPhaden M. J. , 2013: Dust accumulation biases in PIRATA shortwave radiation records. J. Atmos. Oceanic Technol., 30, 14141432, doi:10.1175/JTECH-D-12-00169.1.

    • Search Google Scholar
    • Export Citation
  • Gilgen, H., and Ohmura A. , 1999: The Global Energy Balance Archive. Bull. Amer. Meteor. Soc., 80, 831850, doi:10.1175/1520-0477(1999)080<0831:TGEBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gu, L. H., Baldocchi D. , Verma S. B. , Black T. A. , Vesala T. , Falge E. M. , and Dowty P. R. , 2002: Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res., 107, 4050, doi:10.1029/2001JD001242.

    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., and Myers D. R. , 2009: Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Sol. Energy, 83, 171185, doi:10.1016/j.solener.2008.07.015.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., Ritchey N. A. , Wilber A. C. , Whitlock C. H. , Gibson G. G. , and Stackhouse P. W. , 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710, doi:10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hicke, J. A., 2005: NCEP and GISS solar radiation data sets available for ecosystem modeling: Description, differences, and impacts on net primary production. Global Biogeochem. Cycles, 19, GB2006, doi:10.1029/2004GB002391.

    • Search Google Scholar
    • Export Citation
  • Huntzinger, D. N., and Coauthors, 2013: The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project—Part 1: Overview and experimental design. Geosci. Model Dev., 6, 21212133, doi:10.5194/gmd-6-2121-2013.

    • Search Google Scholar
    • Export Citation
  • Jepsen, S. M., Molotch N. P. , Williams M. W. , Rittger K. E. , and Sickman J. O. , 2012: Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: Examples from two alpine watersheds. Water Resour. Res., 48, W02529, doi:10.1029/2011WR011006.

    • Search Google Scholar
    • Export Citation
  • Jia, B., Xie Z. , Dai A. , Shi C. , and Chen F. , 2013: Evaluation of satellite and reanalysis products of downward surface solar radiation over East Asia: Spatial and seasonal variations. J. Geophys. Res. Atmos., 118, 34313446, doi:10.1002/jgrd.50353.

    • Search Google Scholar
    • Export Citation
  • Journee, M., and Bertrand C. , 2011: Quality control of solar radiation data within the RMIB solar measurements network. Sol. Energy, 85, 7286, doi:10.1016/j.solener.2010.10.021.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S. K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Loeb N. G. , Rose F. G. , Doelling D. R. , Rutan D. A. , Caldwell T. E. , Yu L. , and Weller R. A. , 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., Dong X. , Xi B. , Xie S. , Zhang Y. , and Chen J. , 2011: A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Climate, 24, 45414557, doi:10.1175/2011JCLI3978.1.

    • Search Google Scholar
    • Export Citation
  • Kiniry, J. R., Tischler C. R. , and Van Esbroeck G. A. , 1999: Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy, 17, 95112, doi:10.1016/S0961-9534(99)00036-7.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Rosenberg E. A. , Lin C. , Nijssen B. , Mishra V. , Andreadis K. M. , Maurer E. P. , and Lettenmaier D. P. , 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Markovic, M., Jones C. G. , Winger K. , and Paquin D. , 2009: The surface radiation budget over North America: Gridded data assessment and evaluation of regional climate models. Int. J. Climatol., 29, 22262240, doi:10.1002/joc.1860.

    • Search Google Scholar
    • Export Citation
  • Mercado, L. M., Bellouin N. , Sitch S. , Boucher O. , Huntingford C. , Wild M. , and Cox P. M. , 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 10141017, doi:10.1038/nature07949.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., Clark M. P. , Slater A. G. , Brekke L. D. , Elsner M. M. , Arnold J. R. , and Gangopadhyay S. , 2014: Hydrologic implications of different large-scale meteorological model forcing datasets in mountainous regions. J. Hydrometeor., 15, 474488, doi:10.1175/JHM-D-13-036.1.

    • Search Google Scholar
    • Export Citation
  • Monteith, J., 1972: Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol., 9, 747766, doi:10.2307/2401901.

  • Ngo-Duc, T., Polcher J. , and Laval K. , 2005: A 53-year forcing data set for land surface models. J. Geophys. Res., 110, D06116, doi:10.1029/2004JD005434.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., doi:10.5065/D6RR1W7M.

  • Piao, S., and Coauthors, 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biol., 19, 21172132, doi:10.1111/gcb.12187.

    • Search Google Scholar
    • Export Citation
  • Pinker, R., and Laszlo I. , 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211, doi:10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichelstein, S., and Yorston M. , 2013: The prospects for cost competitive solar PV power. Energy Policy, 55, 117127, doi:10.1016/j.enpol.2012.11.003.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Toure A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., 1999: Estimating the diffuse component from daily and monthly measurements of global radiation. Agric. For. Meteor., 95, 169185, doi:10.1016/S0168-1923(99)00028-3.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., and Dejong T. M. , 2003: Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves. Ann. Bot., 91, 869877, doi:10.1093/aob/mcg094.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Schiffer R. A. , 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135148, doi:10.1016/S0034-4257(02)00091-3.

    • Search Google Scholar
    • Export Citation
  • Shapiro, R., 1987: A simple model for the calculation of the flux of direct and diffuse solar radiation through the atmosphere. AFGL-TR-87-0200, Air Force Geophysics Laboratory, Hanscom AFB, 40 pp.

  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Shi, G.-Y., Hayasaka T. , Ohmura A. , Chen Z.-H. , Wang B. , Zhao J.-Q. , Che H.-Z. , and Xu L. , 2008: Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteor. Climatol., 47, 10061016, doi:10.1175/2007JAMC1493.1.

    • Search Google Scholar
    • Export Citation
  • Shook, K., and Pomeroy J. , 2011: Synthesis of incoming shortwave radiation for hydrological simulation. Hydrol. Res., 42, 433446, doi:10.2166/nh.2011.074.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., Barrett A. P. , Clark M. P. , Lundquist J. D. , and Raleigh M. S. , 2013: Uncertainties in seasonal snow reconstruction: Relative impacts of model forcing and image availability. Adv. Water Resour., 55, 165177, doi:10.1016/j.advwatres.2012.07.006.

    • Search Google Scholar
    • Export Citation
  • Spitters, C., Toussaint H. , and Goudraain J. , 1986: Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. 1. Components of incoming radiation. Agric. For. Meteor., 38, 217229, doi:10.1016/0168-1923(86)90060-2.

    • Search Google Scholar
    • Export Citation
  • Stoffel, T. L., Reda I. , Myers D. R. , Renne D. , Wilcox S. , and Treadwell J. , 2000: Current issues in terrestrial solar radiation instrumentation for energy, climate, and space applications. Metrologia, 37, 399402, doi:10.1088/0026-1394/37/5/11.

    • Search Google Scholar
    • Export Citation
  • Thornton, P., and Running S. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93, 211228, doi:10.1016/S0168-1923(98)00126-9.

    • Search Google Scholar
    • Export Citation
  • Thornton, P., Hasenauer H. , and White M. , 2000: Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agric. For. Meteor., 104, 255271, doi:10.1016/S0168-1923(00)00170-2.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, A., and Zeng X. , 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, doi:10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., Gomes S. , Viterbo P. , Oesterle H. , Adam J. C. , Bellouin N. , Boucher O. , and Best M. , 2010: The WATCH forcing data 1958–2001: A meteorological forcing dataset for land surface- and hydrological-models. Tech. Rep. 22, WATCH, 41 pp.

  • Wei, Y., and Coauthors, 2014: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project—Part 2: Environmental driver data. Geosci. Model Dev., 7, 28752893, doi:10.5194/gmd-7-2875-2014.

    • Search Google Scholar
    • Export Citation
  • Weiss, A., and Norman J. , 1985: Partitioning solar radiation into direct and diffuse, visible and near-infrared components. Agric. For. Meteor., 34, 205213, doi:10.1016/0168-1923(85)90020-6.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2014: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Climate Dyn., 44, 33933429, doi:10.1007/s00382-014-2430-z.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., and Kanamitsu M. , 2013: Incremental correction for the dynamical downscaling of ensemble mean atmospheric fields. Mon. Wea. Rev., 141, 30873101, doi:10.1175/MWR-D-12-00271.1.

    • Search Google Scholar
    • Export Citation
  • Younes, S., Claywell R. , and Muneer T. , 2005: Quality control of solar radiation data: Present status and proposed new approaches. Energy, 30, 15331549, doi:10.1016/j.energy.2004.04.031.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., Rossow W. B. , Lacis A. A. , Oinas V. , and Mishchenko M. I. , 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., Running S. W. , and Nemani R. R. , 2006: Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res., 111, G01002, doi:10.1029/2004JG000004.

    • Search Google Scholar
    • Export Citation
  • Zib, B. J., Dong X. , Xi B. , and Kennedy A. , 2012: Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the Arctic using BSRN surface observations. J. Climate, 25, 22912305, doi:10.1175/JCLI-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1771 506 20
PDF Downloads 1419 258 21