• Aonashi, K., and et al. , 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Asadullah, A., , McIntyre N. , , and Kigobe M. , 2008: Evaluation of five satellite products for estimation of rainfall over Uganda. Hydrol. Sci. J., 53, 11371150, doi:10.1623/hysj.53.6.1137.

    • Search Google Scholar
    • Export Citation
  • Becker, A., , Finger P. , , Meyer-Christoffer A. , , Rudolf B. , , Schamm K. , , Schneider U. , , and Ziese M. , 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A., 1998: A Smirnov test–based clustering algorithm with application to extreme precipitation data. Water Resour. Res., 34, 169176, doi:10.1029/97WR03133.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Ceccato P. , , Grover-Kopec E. , , Lemma M. , , Connor S. J. , , and Ropelewski C. F. , 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28, 15031526, doi:10.1080/01431160600954688.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Chidzambwa S. , , Ceccato P. , , Connor S. J. , , and Ropelewski C. F. , 2008: Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens., 29, 40974110, doi:10.1080/01431160701772526.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Ceccato P. , , and Connor S. J. , 2011: Challenges of satellite rainfall estimation over mountainous and arid parts of East Africa. Int. J. Remote Sens., 32, 59655979, doi:10.1080/01431161.2010.499381.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and et al. , 2011: Investigation of the 2006 drought and 2007 flood extremes at the Southern Great Plains through an integrative analysis of observations. J. Geophys. Res., 116, D03204, doi:10.1029/2010JD014776.

    • Search Google Scholar
    • Export Citation
  • Gong, X., , and Richman M. B. , 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8, 897931, doi:10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimes, D. I. F., , Pardo-Igúzquiza E. , , and Bonifacio R. , 1999: Optimal areal rainfall estimation using raingauges and satellite data. J. Hydrol., 222, 93108, doi:10.1016/S0022-1694(99)00092-X.

    • Search Google Scholar
    • Export Citation
  • Haile, A. T., , Habib E. , , Elsaadani M. , , and Rientjes T. , 2013: Inter-comparison of satellite rainfall products for representing rainfall diurnal cycle over the Nile basin. Int. J. Appl. Earth Obs., 21, 230240, doi:10.1016/j.jag.2012.08.012.

    • Search Google Scholar
    • Export Citation
  • Hartigan, J. A., , and Wong M. A. , 1979: A K-means clustering algorithm. J. Roy. Stat. Soc., 28C, 100108.

  • Hirpa, F. A., , Gebremichael M. , , and Hopson T. , 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, doi:10.1175/2009JAMC2298.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., , Gao X. , , Sorooshian S. , , and Gupta H. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi-global, multi-year, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khan, S. I., and et al. , 2011: Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens., 49, 8595, doi:10.1109/TGRS.2010.2057513.

    • Search Google Scholar
    • Export Citation
  • Kinuthia, J. H., 1992: Horizontal and vertical structure of the Lake Turkana jet. J. Appl. Meteor., 31, 12481274, doi:10.1175/1520-0450(1992)031<1248:HAVSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and et al. , 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., , Ebert E. E. , , Turk F. J. , , Levizzani V. , , Kirschbaum D. , , Tapiador F. J. , , Loew A. , , and Borsche M. , 2013: Precipitation from space: Advancing Earth system science. Bull. Amer. Meteor. Soc., 94, 365375, doi:10.1175/BAMS-D-11-00171.1.

    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., , Grimes D. I. F. , , Allan R. P. , , Greatrex H. , , Rojas O. , , and Leo O. , 2013: Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteor. Appl., 20, 308317, doi:10.1002/met.1283.

    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., , Grimes D. I. F. , , Allan R. P. , , Tarnavsky E. , , Stringer M. , , Hewison T. , , Roebeling R. , , and Black E. , 2014: The 30 year TAMSAT African Rainfall Climatology and Time Series (TARCAT) data set. J. Geophys. Res. Atmos., 119, 10 61910 644, doi:10.1002/2014JD021927.

    • Search Google Scholar
    • Export Citation
  • Meyer-Christoffer, A., , Becker A. , , Finger P. , , Rudolf B. , , Schneider U. , , and Ziese M. , 2011a: GPCC climatology version 2011 at 0.25°: Monthly land-surface precipitation climatology for every month and the total year from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, accessed 20 March 2015, doi:10.5676/DWD_GPCC/CLIM_M_V2011_025.

  • Meyer-Christoffer, A., , Becker A. , , Finger P. , , Rudolf B. , , Schneider U. , , and Ziese M. , 2011b: GPCC climatology version 2011 at 0.5°: Monthly land-surface precipitation climatology for every month and the total year from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, accessed 20 March 2015, doi:10.5676/DWD_GPCC/CLIM_M_V2011_050.

  • Michaelides, S., , Levizzani V. , , Anagnostou E. , , Bauer P. , , Kasparis T. , , and Lane J. E. , 2009: Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res., 94, 512533, doi:10.1016/j.atmosres.2009.08.017.

    • Search Google Scholar
    • Export Citation
  • Milford, J. R., , and Dugdale G. , 1990: Estimation of rainfall using geostationary satellite data. Applications of Remote Sensing in Agriculture, M. D. Steven and J. A. Clark, Eds., Elsevier, 97–110.

  • Muchiri, P. W., 2007: Climate of Somalia. Tech. Rep. W-01, FAO-SWALIM, 73 pp. [Available online at http://www.faoswalim.org/resources/site_files/W-01%20Climate%20of%20Somalia_0.pdf.]

  • Nicholson, S. E., 1996: A review of climate dynamics and climate variability in eastern Africa. The Limnology, Climatology, and Paleoclimatology of East African Lakes, T. C. Johnson and E. O. Odada, Eds., Gordon and Breach, 25–56.

  • Nicholson, S. E., 2014: A detailed look at the recent drought situation in the Greater Horn of Africa. J. Arid Environ., 103, 7179, doi:10.1016/j.jaridenv.2013.12.003.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., , Ushio T. , , Iguchi T. , , Takahashi N. , , and Iwanami K. , 2005: The Global Satellite Mapping of Precipitation (GSMaP) project. Proc. 2005 IEEE Int. Geoscience and Remote Sensing Symp., Seoul, South Korea, IEEE, 34143416, doi:10.1109/IGARSS.2005.1526575.

  • Riddle, E. E., , and Cook K. H. , 2008: Abrupt rainfall transitions over the Greater Horn of Africa: Observations and regional model simulations. J. Geophys. Res., 113, D15109, doi:10.1029/2007JD009202.

    • Search Google Scholar
    • Export Citation
  • Romilly, T. G., , and Gebremichael M. , 2011: Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci., 15, 15051514, doi:10.5194/hess-15-1505-2011.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , Becker A. , , Finger P. , , Meyer-Christoffer A. , , Rudolf B. , , and Ziese M. , 2011: GPCC full data reanalysis version 6.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Global Precipitation Climatology Centre, accessed 20 March 2015, doi:10.5676/DWD_GPCC/FD_M_V6_050.

  • Schneider, U., , Becker A. , , Finger P. , , Meyer-Christoffer A. , , Ziese M. , , and Rudolf B. , 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Serrat-Capdevila, A., , Valdes J. B. , , and Stakhiv E. Z. , 2014: Water management applications for satellite precipitation products: Synthesis and recommendations. J. Amer. Water Resour. Assoc., 50, 509525, doi:10.1111/jawr.12140.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and et al. , 2014: A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bull. Amer. Meteor. Soc., 95, 861882, doi:10.1175/BAMS-D-12-00124.1.

    • Search Google Scholar
    • Export Citation
  • Tarnavsky, E., , Grimes D. , , Maidment R. I. , , Stringer M. , , Chadwick R. , , Allan R. P. , , Black E. , , and Kayitakire F. , 2014: Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present. J. Appl. Meteor. Climatol., 53, 28052822, doi:10.1175/JAMC-D-14-0016.1.

    • Search Google Scholar
    • Export Citation
  • Thiemig, V., , Rojas R. , , Zambrano-Bigiarini M. , , Levizzani V. , , and De Roo A. , 2012: Validation of satellite-based precipitation products over sparsely gauged African river basins. J. Hydrometeor., 13, 17601783, doi:10.1175/JHM-D-12-032.1.

    • Search Google Scholar
    • Export Citation
  • Thiemig, V., , Rojas R. , , Zambrano-Bigiarini M. , , and De Roo A. , 2013: Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro–Akobo basin. J. Hydrol., 499, 324338, doi:10.1016/j.jhydrol.2013.07.012.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., , and Peters-Lidard C. D. , 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , Dai A. , , Rasmussen R. M. , , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , Dai A. , , van der Schrier G. , , Jones P. D. , , Barichivich J. , , Briffa K. R. , , and Sheffield J. , 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, doi:10.1038/nclimate2067.

    • Search Google Scholar
    • Export Citation
  • Tsidu, M. G., 2012: High-resolution monthly rainfall database for Ethiopia: Homogenization, reconstruction, and gridding. J. Climate, 25, 84228443, doi:10.1175/JCLI-D-12-00027.1.

    • Search Google Scholar
    • Export Citation
  • UNEP, 2008: Africa: Atlas of our changing environment. United Nations Environment Programme Doc., 374 pp. [Available online at http://www.unep.org/dewa/Africa/AfricaAtlas/PDF/en/Africa_Atlas_Full_en.pdf.]

  • Ushio, T., and et al. , 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, doi:10.2151/jmsj.87A.137.

    • Search Google Scholar
    • Export Citation
  • Vrieling, A., , Steerk G. , , and deJong S. M. , 2010: Satellite-based estimation of rainfall erosivity for Africa. J. Hydrol., 395, 235241, doi:10.1016/j.jhydrol.2010.10.035.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and et al. , 2012: Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Climate Dyn., 39, 23072328, doi:10.1007/s00382-011-1222-y.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and Arkin P. A. , 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858, doi:10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and Xiong A.-Y. , 2011: A conceptual model for constructing high-resolution gauge–satellite merged precipitation analyses. J. Geophys. Res., 116, D21106, doi:10.1029/2011JD016118.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , Yoo S.-H. , , Joyce R. , , and Yarosh Y. , 2011: Bias-corrected CMORPH: A 13-year analysis of high-resolution global precipitation. Geophysical Research Abstracts, Vol. 13, Abstract EGU2011-1809. [Available online at http://meetingorganizer.copernicus.org/EGU2011/EGU2011-1809.pdf.]

  • Yang, W., , Seager R. , , Cane M. A. , , and Lyon B. , 2015: The annual cycle of East African precipitation. J. Climate, 28, 23852404, doi:10.1175/JCLI-D-14-00484.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 190 17
PDF Downloads 202 202 18

Evaluation of Monthly Satellite-Derived Precipitation Products over East Africa

View More View Less
  • 1 Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, Italy
  • | 2 Department of Applied Physics, University of León, León, Spain
  • | 3 Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, Italy
© Get Permissions
Restricted access

Abstract

East Africa experienced in the 2001–11 time period some of the worst drought events to date, culminating in the high-impact drought of 2010/11. Long-term monitoring of precipitation is thus essential, and satellite-based precipitation products can help in coping with the relatively sparse rain gauge ground networks of this area of the world. However, the complex topography and the marked geographic variability of precipitation in the region make precipitation retrieval from satellites problematic and product validation and intercomparison necessary. Six state-of-the-art monthly satellite precipitation products over East Africa during the 2001–09 time frame are evaluated. Eight areas (clusters) are identified by investigating the precipitation seasonality through the Global Precipitation Climatology Centre (GPCC) climatological gauge data. Seasonality was fully reproduced by satellite data in each of the GPCC-identified clusters. Not surprisingly, complex terrain (mountain regions in particular) represents a challenge for satellite precipitation estimates, as demonstrated by the standard deviations of the six-product ensemble. A further confirmation comes from the comparison between satellite estimates and rain gauge measurements as a function of terrain elevation. The 3B42 product performs best, although the satellite–gauge comparative analysis was not completely independent since a few of the products include a rain gauge bias correction.

Denotes Open Access content.

Corresponding author address: Elsa Cattani, CNR-ISAC, Via Gobetti 101, Bologna 40129, Italy. E-mail: e.cattani@isac.cnr.it

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

East Africa experienced in the 2001–11 time period some of the worst drought events to date, culminating in the high-impact drought of 2010/11. Long-term monitoring of precipitation is thus essential, and satellite-based precipitation products can help in coping with the relatively sparse rain gauge ground networks of this area of the world. However, the complex topography and the marked geographic variability of precipitation in the region make precipitation retrieval from satellites problematic and product validation and intercomparison necessary. Six state-of-the-art monthly satellite precipitation products over East Africa during the 2001–09 time frame are evaluated. Eight areas (clusters) are identified by investigating the precipitation seasonality through the Global Precipitation Climatology Centre (GPCC) climatological gauge data. Seasonality was fully reproduced by satellite data in each of the GPCC-identified clusters. Not surprisingly, complex terrain (mountain regions in particular) represents a challenge for satellite precipitation estimates, as demonstrated by the standard deviations of the six-product ensemble. A further confirmation comes from the comparison between satellite estimates and rain gauge measurements as a function of terrain elevation. The 3B42 product performs best, although the satellite–gauge comparative analysis was not completely independent since a few of the products include a rain gauge bias correction.

Denotes Open Access content.

Corresponding author address: Elsa Cattani, CNR-ISAC, Via Gobetti 101, Bologna 40129, Italy. E-mail: e.cattani@isac.cnr.it

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save