• Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114, 91109, doi:10.1007/s10546-004-4834-5.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., , and Grimmond C. S. B. , 2013: Analysis of the seasonal cycle within the first international urban land surface model comparison. Bound.-Layer Meteor., 146, 421446, doi:10.1007/s10546-012-9769-7.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., , and Grimmond C. S. B. , 2014: Importance of initial state and atmospheric conditions for urban land surface models performance. Urban Climate, 10, 387406, doi:10.1016/j.uclim.2013.10.006.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., , and Grimmond C. S. B. , 2015: Key conclusions of the first international urban land surface model comparison. Bull. Amer. Meteor. Soc., 96, 805819, doi:10.1175/BAMS-D-14-00122.1.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., , and Grimmond C. S. B. , 2016: Investigation of the impact of anthropogenic heat flux within an urban land surface model and PILPS-Urban. Theor. Appl. Climatol., doi:10.1007/s00704-015-1554-3, in press.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., , Grimmond C. S. B. , , and Villani M. G. , 2006: Evaluation of the urban tile in MOSES using surface energy balance observations. Bound.-Layer Meteor., 118, 503525, doi:10.1007/s10546-005-9025-5.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and et al. , 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and et al. , 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 14251442, doi:10.1175/JHM-D-14-0158.1.

    • Search Google Scholar
    • Export Citation
  • Christen, A., , and Vogt R. , 2004: Energy and radiation balance of a central European city. Int. J. Climatol., 24, 13951421, doi:10.1002/joc.1074.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., , Ball J. T. , , Grivet C. , , and Berry J. A. , 1991: Physical and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, doi:10.1016/0168-1923(91)90002-8.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., , Ribas-Carbo M. , , and Berry J. A. , 1992: Coupled phytosynthesis–stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538, doi:10.1071/PP9920519.

    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., , Beringer J. , , and Tapper N. J. , 2007a: Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. Atmos. Environ., 41, 5162, doi:10.1016/j.atmosenv.2006.08.030.

    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., , Beringer J. , , and Tapper N. J. , 2007b: Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J. Appl. Meteor., 46, 477493, doi:10.1175/JAM2462.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, B., , Grimmond C. S. B. , , and Christen A. , 2011: Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area. Atmos. Environ., 45, 896905, doi:10.1016/j.atmosenv.2010.11.017.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., , and Mestayer P. G. , 2006: Parameterisation of the urban energy budget with the submesoscale soil model. J. Appl. Meteor. Climatol., 45, 17441765, doi:10.1175/JAM2417.1.

    • Search Google Scholar
    • Export Citation
  • Fortuniak, K., 2003: A slab surface energy balance model (SUEB) and its application to the study on the role of roughness length in forming an urban heat island. Acta Univ. Wratislav., 2542, 368377.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , and Oke T. R. , 1986: Urban water balance. 2. Results from a suburb of Vancouver, British Columbia. Water Resour. Res., 22, 14041412, doi:10.1029/WR022i010p01404.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , and Oke T. R. , 1995: Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. J. Appl. Meteor., 34, 873889, doi:10.1175/1520-0450(1995)034<0873:COHFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , and Oke T. R. , 1999: Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor., 38, 922940, doi:10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , and Oke T. R. , 2002: Turbulent heat fluxes in urban areas: Observations and Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). J. Appl. Meteor., 41, 792810, doi:10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , and Christen A. , 2012: Flux measurements in urban ecosystems. FluxLetter: The Newsletter of Fluxnet, Vol. 5, No. 1, University of California, Berkeley, Berkley, CA, 18.

  • Grimmond, C. S. B., , Oke T. R. , , and Cleugh H. A. , 1993: The role of ‘rural’ in comparisons of observed suburban–rural flux differences. IAHS Publ., 212, 165174.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , Souch C. , , and Hubble M. D. , 1996: Influence of tree cover on summertime surface energy balance fluxes, San Gabriel Valley, Los Angeles. Climate Res., 6, 4557, doi:10.3354/cr006045.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., , Salmond J. A. , , Oke T. R. , , Offerle B. , , and Lemonsu A. , 2004: Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J. Geophys. Res., 109, D24101, doi:10.1029/2004JD004936.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and et al. , 2010: The international urban energy balance models comparison project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292, doi:10.1175/2010jamc2354.1.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and et al. , 2011: Initial results from phase 2 of the international urban energy balance model comparison. Int. J. Climatol., 31, 244272, doi:10.1002/joc.2227.

    • Search Google Scholar
    • Export Citation
  • Harris, I., , Jones P. D. , , Osborn T. J. , , and Lister D. H. , 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Järvi, L., , Grimmond C. S. B. , , Taka M. , , Nordbo A. , , Setälä H. , , and Strachan I. B. , 2014: Development of the surface urban energy and water balance scheme (SUEWS) for cold climate cities. Geosci. Model Dev., 7, 16911711, doi:10.5194/gmd-7-1691-2014.

    • Search Google Scholar
    • Export Citation
  • Kawai, T., , Ridwan M. K. , , and Kanda M. , 2009: Evaluation of the simple urban energy balance model using 1-yr flux observations at two cities. J. Appl. Meteor. Climatol., 48, 693715, doi:10.1175/2008JAMC1891.1.

    • Search Google Scholar
    • Export Citation
  • King, T., , and Grimmond C. S. B. , 1997: Transfer mechanisms over an urban surface for water vapor, sensible heat, and momentum. Preprints, 12th Conf. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 455–456.

  • Kondo, H., , Genchi Y. , , Kikegawa Y. , , Ohashi Y. , , Yoshikado H. , , and Komiyama H. , 2005: Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: Structure of the urban canopy model and its basic performance. Bound.-Layer Meteor., 116, 395421, doi:10.1007/s10546-005-0905-5.

    • Search Google Scholar
    • Export Citation
  • Krayenhoff, E. S., , and Voogt J. A. , 2007: A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound.-Layer Meteor., 123, 433461, doi:10.1007/s10546-006-9153-6.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., , and Park S.-U. , 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteor., 126, 73102, doi:10.1007/s10546-007-9221-6.

    • Search Google Scholar
    • Export Citation
  • Leuning, R., , van Gorsel E. , , Massman W. J. , , and Isacc P. R. , 2012: Reflections on the surface energy imbalance problem. Agric. For. Meteor., 156, 6574, doi:10.1016/j.agrformet.2011.12.002.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., , and Grimmond C. S. B. , 2012a: Characterization of energy flux partitioning in urban environments: Links with surface seasonal properties. J. Appl. Meteor. Climatol., 51, 219241, doi:10.1175/JAMC-D-11-038.1.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., , and Grimmond C. S. B. , 2012b: Multi-site evaluation of an urban land-surface model: Intra-urban heterogeneity, seasonality and parameter complexity requirements. Quart. J. Roy. Meteor. Soc., 138, 10941113, doi:10.1002/qj.963.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., , Grimmond C. S. B. , , Offerle B. D. , , Young D. T. , , Smith T. E. L. , , Järvi L. , , and Lindberg F. , 2011: Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): Longwave radiation parameterization and seasonality-related developments. J. Appl. Meteor. Climatol., 50, 185202, doi:10.1175/2010JAMC2474.1.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., , Clappier A. , , and Rotach M. W. , 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, doi:10.1023/A:1016099921195.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357397, doi:10.1023/A:1002463829265.

    • Search Google Scholar
    • Export Citation
  • Meier, F., , and Scherer D. , 2012: Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor. Appl. Climatol., 110, 373384, doi:10.1007/s00704-012-0631-0.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., , and Obukhov A. M. , 1954: Basic regularity in turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • New, M., , Hulme M. , , and Jones P. , 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856, doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • New, M., , Hulme M. , , and Jones P. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newton, T., 1999: Energy balance fluxes in a subtropical city: Miami, FL. M.S. thesis, Dept. of Geography, University of British Columbia, 140 pp.

  • Newton, T., , Oke T. R. , , Grimmond C. S. B. , , and Roth M. , 2007: The suburban energy balance in Miami, Florida. Geogr. Ann., 89A, 331347, doi:10.1111/j.1468-0459.2007.00329.x.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., , Grimmond C. S. B. , , and Fortuniak K. , 2005a: Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int. J. Climatol., 25, 14051491, doi:10.1002/joc.1198.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., , Jonsson P. , , Eliasson I. , , and Grimmond C. S. B. , 2005b: Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso. J. Climate, 18, 39833995, doi:10.1175/JCLI3520.1.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., , Grimmond C. S. B. , , Fortuniak K. , , Kłysik K. , , and Oke T. R. , 2006a: Temporal variations in heat fluxes over a central European city centre. Theor. Appl. Climatol., 84, 103115, doi:10.1007/s00704-005-0148-x.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., , Grimmond C. S. B. , , Fortuniak K. , , and Pawlak W. , 2006b: Intraurban differences of surface energy fluxes in a central European city. J. Appl. Meteor. Climatol., 45, 125136, doi:10.1175/JAM2319.1.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., , and Hay J. E. , 1998: The Climate of Vancouver. 2nd ed. BC Geographical Series, No. 50, University of British Columbia Press, 84 pp.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., , Spronken-Smith A. , , Jauregui E. , , and Grimmond C. S. B. , 1999: The energy balance of central Mexico City during the dry season. Atmos. Environ., 33, 39193930, doi:10.1016/S1352-2310(99)00134-X.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., , Bonan G. B. , , Feddema J. , , Vertenstein M. , , and Grimmond C. S. B. , 2008: An urban parameterization for a global climate model: 1. Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 10381060, doi:10.1175/2007JAMC1597.1.

    • Search Google Scholar
    • Export Citation
  • Pawlak, W., , Fortuniak K. , , and Siedlecki M. , 2011: Carbon dioxide flux in the centre of Łódź, Poland—Analysis of a 2-year eddy covariance measurement data set. Int. J. Climatol., 31, 232243, doi:10.1002/joc.2247.

    • Search Google Scholar
    • Export Citation
  • Porson, A., , Clark P. A. , , Harman I. N. , , Best M. J. , , and Belcher S. E. , 2010: Implementation of a new urban scheme in the MetUM. Part I: Description and idealized simulations. Quart. J. Roy. Meteor. Soc., 136, 15141529, doi:10.1002/qj.668.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., , Baik J.-J. , , and Lee S.-H. , 2011: A new single layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 17731794, doi:10.1175/2011JAMC2665.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , Becker A. , , Finger P. , , Meyer-Christoffer A. , , Ziese M. , , and Rudolf B. , 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., , and Zwiers F. , 1998: An improved scheme for time-dependent boundary conditions in atmospheric general circulation models. Climate Dyn., 14, 609613, doi:10.1007/s003820050244.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., , and Oke T. R. , 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, doi:10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Vesala, T., and et al. , 2008: Surface–atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus, 60B, 188199, doi:10.1111/j.1600-0889.2007.00312.x.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., and et al. , 2011: Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823848, doi:10.1175/2011JHM1369.1.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., , Balsamo G. , , Bellouin N. , , Gomes S. , , Best M. J. , , and Viterbo P. , 2014: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 75057514, doi:10.1002/2014WR015638.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 1
PDF Downloads 61 61 0

Modeling the Partitioning of Turbulent Fluxes at Urban Sites with Varying Vegetation Cover

View More View Less
  • 1 Met Office, Exeter, and Department of Geography, King’s College London, London, United Kingdom
  • | 2 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

Inclusion of vegetation is critical for urban land surface models (ULSM) to represent reasonably the turbulent sensible and latent heat flux densities in an urban environment. Here the Joint UK Land Environment Simulator (JULES), a ULSM, is used to simulate the Bowen ratio at a number of urban and rural sites with vegetation cover varying between 1% and 98%. The results show that JULES is able to represent the observed Bowen ratios, but only when the additional anthropogenic water supplied into the urban ecosystem is considered. The impact of the external water use (e.g., through irrigation or street cleaning) on the surface energy flux partitioning can be as substantial as that of the anthropogenic heat flux on the sensible and latent heat fluxes. The Bowen ratio varies from 1 to 2 when the plan area vegetation fraction is between 30% and 70%. However, when the vegetation fraction is less than 20%, the Bowen ratios increase substantially (2–10) and have greater sensitivity to assumptions about external water use. As there are few long-term observational sites with vegetation cover less than 30%, there is a clear need for more measurement studies in such environments.

Corresponding author address: Martin Best, Met Office, Fitzroy Road, Exeter, Devon EX1 3PB, United Kingdom. E-mail: martin.best@metoffice.gov.uk

Abstract

Inclusion of vegetation is critical for urban land surface models (ULSM) to represent reasonably the turbulent sensible and latent heat flux densities in an urban environment. Here the Joint UK Land Environment Simulator (JULES), a ULSM, is used to simulate the Bowen ratio at a number of urban and rural sites with vegetation cover varying between 1% and 98%. The results show that JULES is able to represent the observed Bowen ratios, but only when the additional anthropogenic water supplied into the urban ecosystem is considered. The impact of the external water use (e.g., through irrigation or street cleaning) on the surface energy flux partitioning can be as substantial as that of the anthropogenic heat flux on the sensible and latent heat fluxes. The Bowen ratio varies from 1 to 2 when the plan area vegetation fraction is between 30% and 70%. However, when the vegetation fraction is less than 20%, the Bowen ratios increase substantially (2–10) and have greater sensitivity to assumptions about external water use. As there are few long-term observational sites with vegetation cover less than 30%, there is a clear need for more measurement studies in such environments.

Corresponding author address: Martin Best, Met Office, Fitzroy Road, Exeter, Devon EX1 3PB, United Kingdom. E-mail: martin.best@metoffice.gov.uk
Save