• Asharaf, S., , and Ahrens B. , 2015: Indian summer monsoon rainfall processes in climate change scenarios. J. Climate, 28, 54145429, doi:10.1175/JCLI-D-14-00233.1.

    • Search Google Scholar
    • Export Citation
  • Ashfaq, M., , Shi Y. , , Tung W. , , Trapp R. J. , , Gao X. , , Pal J. S. , , and Diffenbaugh N. S. , 2009: Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett., 36, L01704, doi:10.1029/2008GL036500.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., , Ming Y. , , and Ramaswamy V. , 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , Smith C. , , and Wallace J. M. , 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., , Krusic P. J. , , and Jones P. D. , 2003: Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. Int. J. Climatol., 23, 707732, doi:10.1002/joc.911.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., , and Archer D. R. , 2006: Conflicting signals of climatic change in the upper Indus basin. J. Climate, 19, 42764293, doi:10.1175/JCLI3860.1.

    • Search Google Scholar
    • Export Citation
  • Gao, H., and et al. , 2010: Water budget record from Variable Infiltration Capacity (VIC) model. Algorithm Theoretical Basis Doc., 56 pp. [Available online at http://www.hydro.washington.edu/SurfaceWaterGroup/Publications/Water_Cycle_MEaSUREs_ATBD_VICmodel_submit.doc.]

  • Goswami, B. N., , Madhusoodanan M. S. , , Neema C. P. , , and Sengupta D. , 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, doi:10.1029/2005GL024803.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , Sato M. , , Ruedy R. , , Lo K. , , Lea D. W. , , and Medina-Elizade M. , 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103, 14 28814 293, doi:10.1073/pnas.0606291103.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., , DeFries R. S. , , Townshend J. R. , , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, doi:10.1080/014311600210209.

    • Search Google Scholar
    • Export Citation
  • Hollmann, R., and et al. , 2013: The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, doi:10.1175/BAMS-D-11-00254.1.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., , van Beek L. P. H. , , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Jain, S. K., 2012: India’s water balance and evapotranspiration. Curr. Sci., 102, 964967.

  • Jung, M., and et al. , 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Koll, M., , Ritika K. , , Terray P. , , Murtugudde R. , , Ashok K. , , and Goswami B. N. , 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land–sea thermal gradient. Nat. Commun., 6, 7423, doi:10.1038/ncomms8423.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., , and Sugi M. , 2003: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dyn., 21, 233242, doi:10.1007/s00382-003-0330-8.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., , Rajagopalan B. , , and Cane M. A. , 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, doi:10.1126/science.284.5423.2156.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., and et al. , 2011: The once and future pulse of Indian monsoonal climate. Climate Dyn., 36, 21592170, doi:10.1007/s00382-010-0974-0.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer Variable Infiltration Capacity model. J. Geophys. Res., 101, 21 40321 422, doi:10.1029/96JD01448.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • McVicar, T. R., and et al. , 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416–417, 182205, doi:10.1016/j.jhydrol.2011.10.024.

    • Search Google Scholar
    • Export Citation
  • Menon, A., , Levermann A. , , Schewe J. , , Lehmann J. , , and Frieler K. , 2013: Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn., 4, 287300, doi:10.5194/esd-4-287-2013.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., 2015: Climatic uncertainty in Himalayan water towers. J. Geophys. Res. Atmos., 120, 26892705, doi:10.1002/2014JD022650.

  • Mishra, V., , and Lettenmaier D. P. , 2011: Climatic trends in major US urban areas, 1950–2009. Geophys. Res. Lett., 38, L16401, doi:10.1029/2011GL048255.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., , and Lilhare R. , 2016: Hydrologic sensitivity of Indian sub-continental river basins to climate change. Global Planet. Change, 139, 7896, doi:10.1016/j.gloplacha.2016.01.003.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., , Cherkauer K. A. , , and Bowling L. C. , 2010: Parameterization of lakes and wetlands for energy and water balance studies in the Great Lakes region. J. Hydrometeor., 11, 10571082, doi:10.1175/2010JHM1207.1.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., , Cherkauer K. A. , , Bowling L. C. , , and Huber M. , 2011: Lake ice phenology of small lakes: Impacts of climate variability in the Great Lakes region. Global Planet. Change, 76, 166185, doi:10.1016/j.gloplacha.2011.01.004.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., , Smoliak B. V. , , Lettenmaier D. P. , , and Wallace J. M. , 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, doi:10.1073/pnas.1119150109.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., , Shah R. , , and Thrasher B. , 2014: Soil moisture droughts under the retrospective and projected climate in India. J. Hydrometeor., 15, 22672292, doi:10.1175/JHM-D-13-0177.1.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., , Ganguly A. R. , , Nijssen B. , , and Lettenmaier D. P. , 2015: Changes in observed climate extremes in global urban areas. Environ. Res. Lett., 10, 024005, doi:10.1088/1748-9326/10/2/024005.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., , Zhao M. , , and Running S. W. , 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, doi:10.1016/j.rse.2011.02.019.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., , and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Olmo, F. J., , and Alados-Arboledas L. , 1995: Pinatubo eruption effects on solar radiation at Almeria (36.83°N, 2.41°W). Tellus, 47B, 602606, doi:10.1034/j.1600-0889.47.issue5.7.x.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., , Sridhar L. , , Badwaik M. R. , , and Rajeevan M. , 2014a: Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25° × 0.25°) gridded rainfall data set. Climate Dyn., 45, 755776, doi:10.1007/s00382-014-2307-1.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., , Sridhar L. , , Rajeevan M. , , Sreejith O. P. , , Satbhai N. S. , , and Mukhopadhyay B. , 2014b: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65, 118.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., , Bhate J. , , and Jaswal A. K. , 2008: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett., 35, L18707, doi:10.1029/2008GL035143; Corrigendum, 35, L23701, doi:10.1029/2008GL036105.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , and Ramana M. V. , 2005: Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl. Geophys., 162, 16091626, doi:10.1007/s00024-005-2685-8.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Shah, R. D., , and Mishra V. , 2015: Development of an experimental near-real-time drought monitor for India. J. Hydrometeor., 16, 327345, doi:10.1175/JHM-D-14-0041.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Goteti G. , , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , Reynolds R. W. , , Peterson T. C. , , and Lawrimore J. , 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sneyers, R., 1990: On statistical analysis of series of observations. WMO Tech. Note 143, 192 pp.

  • Turner, A. G., , and Annamalai H. , 2012: Climate change and the South Asian summer monsoon. Nat. Climate Change, 2, 587595, doi:10.1038/nclimate1495.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., , Green P. , , Salisbury J. , , and Lammers R. B. , 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288, doi:10.1126/science.289.5477.284.

    • Search Google Scholar
    • Export Citation
  • Yue, S., , and Wang C. Y. , 2002: Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resour. Res., 38, 1068, doi:10.1029/2001WR000861.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 287 287 35
PDF Downloads 262 262 44

Hydrologic Changes in Indian Subcontinental River Basins (1901–2012)

View More View Less
  • 1 Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
© Get Permissions
Restricted access

Abstract

Long-term (1901–2012) changes in hydroclimatic variables in the 18 Indian subcontinental basins were examined with hydrology simulated using the Variable Infiltration Capacity model (VIC). Changepoint analysis using the sequential Mann–Kendall test showed two distinct periods (1901–47 and 1948–2012) for the domain-averaged monsoon season (June–September) precipitation. Hydrologic changes for the entire water budget were estimated for both periods. In the pre-1948 period, a majority of the river basins experienced increased monsoon season precipitation, evapotranspiration (ET), and surface water availability (as defined by total runoff). Alternatively, in the post-1948 period, monsoon season precipitation declined in 11 of the 18 basins, with statistically significant trends in one (the Ganges basin), and most (15) basins experienced significant warming trends. Additionally, in the post-1948 period, the mean monsoon season ET and surface water availability declined in eight (with significant declines in four) basins. The results indicate that changes in ET and surface water availability in the pre- and post-1948 periods were largely driven by the changes in the monsoon season precipitation rather than air temperature, despite prominent warming after 1975. Coupled modes of variability of sea surface temperature (SST) and surface water availability indicated El Niño–Southern Oscillation (ENSO) as the leading mode. The second mode was identified as the trend mode for surface water availability in the subcontinental river basins, which was largely driven by SST anomalies in the Indian and Atlantic Ocean regions. This indicates that surface water availability in India’s subcontinental basins may be affected in the future in response to changes in large-scale climate variability.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0231.s1.

Corresponding author address: Vimal Mishra, Civil Engineering, IIT Gandhinagar, Shed-3, Room 216, VGEC Campus, Chandkheda, Ahmedabad, Gujarat 382424, India. E-mail: vmishra@iitgn.ac.in

Abstract

Long-term (1901–2012) changes in hydroclimatic variables in the 18 Indian subcontinental basins were examined with hydrology simulated using the Variable Infiltration Capacity model (VIC). Changepoint analysis using the sequential Mann–Kendall test showed two distinct periods (1901–47 and 1948–2012) for the domain-averaged monsoon season (June–September) precipitation. Hydrologic changes for the entire water budget were estimated for both periods. In the pre-1948 period, a majority of the river basins experienced increased monsoon season precipitation, evapotranspiration (ET), and surface water availability (as defined by total runoff). Alternatively, in the post-1948 period, monsoon season precipitation declined in 11 of the 18 basins, with statistically significant trends in one (the Ganges basin), and most (15) basins experienced significant warming trends. Additionally, in the post-1948 period, the mean monsoon season ET and surface water availability declined in eight (with significant declines in four) basins. The results indicate that changes in ET and surface water availability in the pre- and post-1948 periods were largely driven by the changes in the monsoon season precipitation rather than air temperature, despite prominent warming after 1975. Coupled modes of variability of sea surface temperature (SST) and surface water availability indicated El Niño–Southern Oscillation (ENSO) as the leading mode. The second mode was identified as the trend mode for surface water availability in the subcontinental river basins, which was largely driven by SST anomalies in the Indian and Atlantic Ocean regions. This indicates that surface water availability in India’s subcontinental basins may be affected in the future in response to changes in large-scale climate variability.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0231.s1.

Corresponding author address: Vimal Mishra, Civil Engineering, IIT Gandhinagar, Shed-3, Room 216, VGEC Campus, Chandkheda, Ahmedabad, Gujarat 382424, India. E-mail: vmishra@iitgn.ac.in

Supplementary Materials

    • Supplemental Materials (DOC 1.23 MB)
Save