• Adler, R. F., , and Negri A. J. , 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, doi:10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., 2004: A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteor. Appl., 11, 291300, doi:10.1017/S1350482704001409.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., , Iguchi T. , , Kumagai H. , , and Okamoto K. , 1997: Rain type classification algorithm for TRMM Precipitation Radar. Proc. 1997 IEEE Int. Geoscience and Remote Sensing Conf., Singapore, IEEE, 16331635, doi:10.1109/IGARSS.1997.608993

  • Bessho, K., and et al. , 2016: An introduction to Himawari-8/9—Japan's new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, doi:10.2151/jmsj.2016-009.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., , and Listemaa S. A. , 2000: An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl. Meteor., 39, 21292150, doi:10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., , and Ikeda K. , 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553, doi:10.1175/JAM2155.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and et al. , 2013: Evaluation and uncertainty estimation of NOAA/NSSL next-generation National Mosaic Quantitative Precipitation Estimation product (Q2) over the continental United States. J. Hydrometeor., 14, 13081322, doi:10.1175/JHM-D-12-0150.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., , Smith T. M. , , Lakshmanan V. , , Brooks H. E. , , and Ortega K. L. , 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, doi:10.1175/WAF-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., , Pavolonis M. J. , , Sieglaff J. M. , , and Heidinger A. K. , 2013: Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteor. Climatol., 52, 20092023, doi:10.1175/JAMC-D-12-0330.1.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., 2011: The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Wea. Forecasting, 26, 756765, doi:10.1175/WAF-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., , Flamig Z. L. , , Lakshmanan V. , , Kaney B. T. , , Farmer V. , , Reeves H. D. , , and Rothfusz L. P. , 2014: MPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, doi:10.1175/BAMS-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Giannakos, A., , and Feidas H. , 2013: Classification of convective and stratiform rain based on the spectral and textural features of Meteosat Second Generation infrared data. Theor. Appl. Climatol., 113, 495510, doi:10.1007/s00704-012-0802-z.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and et al. , 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., , and Calvert C. M. , 2003: Automated detection of the bright band using WSR-88D data. Wea. Forecasting, 18, 585599, doi:10.1175/1520-0434(2003)018<0585:ADOTBB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., and et al. , 2016: Real-time simulation of the GOES-R ABI for user readiness and product evaluation. Bull. Amer. Meteor. Soc., 97, 245261, doi:10.1175/BAMS-D-14-00007.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , Pavolonis M. J. , , Holz R. E. , , Baum B. A. , , and Berthier S. , 2010: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI. J. Geophys. Res., 115, D00H20, doi:10.1029/2009JD012152.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Hsu K.-L. , , Sorooshian S. , , and Gao X. , 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341852, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Karlson, D., , and Smith M. , 2012: The GOES-R Series: The nation’s next-generation geostationary operational environmental satellites. Earth Sci., 28, 1824.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, M., , Thies B. , , Naub T. , , and Bendix J. , 2010: Rainfall-rate assignment using MSG SEVIRI data—A promising approach to spaceborne rainfall-rate retrieval for midlatitudes. J. Appl. Meteor. Climatol., 49, 14771495, doi:10.1175/2010JAMC2284.1.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, M., , Appelhans T. , , Thies B. , , and Nauss T. , 2014: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests–based approach applied to MSG SEVIRI. Remote Sens. Environ., 141, 129143, doi:10.1016/j.rse.2013.10.026.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., , Zhang J. , , Gourley J. J. , , and Howard K. W. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., 2010: Advances in extracting cloud composition information from spaceborne infrared radiances—A robust alternative to brightness temperatures. Part I: Theory. J. Appl. Meteor. Climatol., 49, 19922012, doi:10.1175/2010JAMC2433.1.

    • Search Google Scholar
    • Export Citation
  • Qi, Y., , Zhang J. , , and Zhang P. , 2013: A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates. Quart. J. Roy. Meteor. Soc., 139, 22332240, doi:10.1002/qj.2095.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , Amitai E. , , and Wolff D. B. , 1995: Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor., 34, 198211, doi:10.1175/1520-0450(1995)034<0198:CORRBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., , Gunshor M. W. , , Menzel W. P. , , Gurka J. J. , , Li J. , , and Bachmeier A. S. , 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., , Ryzhkov A. V. , , Reeves H. D. , , Krause J. , , Kumjian M. R. , , Elmore K. L. , , and Ortega K. L. , 2013: A new surface-based polarimetric hydrometeor classification algorithm for the WSR-88D network. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 7B.3. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228523.html.]

  • Steiner, M., , Houze R. A. , , and Yuter S. E. , 1995: Climatological characteristics of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walther, A., , and Heidinger A. K. , 2012: Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-x. J. Appl. Meteor. Climatol., 51, 13711390, doi:10.1175/JAMC-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Walther, A., , Straka W. , , and Heidinger A. K. , 2011: ABI algorithm theoretical basis Document for Daytime Cloud Optical and Microphysical Properties (DCOMP). NOAA/NESDIS/STAR Algorithm Theoretical Basis Doc., 61 pp. [Available at http://www.goes-r.gov/products/ATBDs/baseline/Cloud_DCOMP_v2.0_no_color.pdf.]

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. International Geophysics Series, Vol. 59, Elsevier, 467 pp.

  • Xu, X., , Howard K. , , and Zhang J. , 2008: An automated radar technique for the identification of tropical precipitation. J. Hydrometeor., 9, 885902, doi:10.1175/2007JHM954.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , Langston C. , , and Howard K. , 2008: Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Oceanic Technol., 25, 18591872, doi:10.1175/2008JTECHA1039.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and et al. , 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , Qi Y. , , Howard K. , , Langston C. , , and Kaney B. , 2012: Radar Quality Index (RQI)—A combined measure of beam blockage and VPR effects in a national network. IAHS Publ., 351, 388393.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and et al. , 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimations: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, doi:10.1175/BAMS-D-14-00174.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 6
PDF Downloads 33 33 5

Naïve Bayesian Precipitation Type Retrieval from Satellite Using a Cloud-Top and Ground-Radar Matched Climatology

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 3 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Satellite-based precipitation estimates are a vital resource for hydrologic applications in data-sparse regions of the world, particularly at daily or longer time scales. With the launch of a new generation of high-resolution imagers on geostationary platforms such as the Geostationary Operational Environmental Satellite series R (GOES-R), an opportunity exists to advance the detection and estimation of flash-flood-scale precipitation events from space beyond what is currently available. Because visible and infrared sensors can only observe cloud-top properties, many visible- and infrared-band-based rainfall algorithms attempt to first classify clouds before deriving a rain rate. This study uses a 2-yr database of cloud-top properties from proxy Advanced Baseline Imager radiances from GOES-R matched to surface precipitation types from the Multi-Radar Multi-Sensor (MRMS) system to develop a naïve Bayesian precipitation type classifier for the four major types of precipitation in MRMS: stratiform, convective, tropical, and hail. Evaluation of the naïve Bayesian precipitation type product showed a bias toward classifying convective and stratiform at the expense of tropical and hail. The tropical and hail classes in MRMS are derived based on the vertical structure and magnitude of radar reflectivity, which may not translate to an obvious signal at cloud top for a satellite-based algorithm. However, the satellite-based product correctly classified the hail areas as being convective in nature for the vast majority of missed hail events.

Corresponding author address: Heather Grams, CIMMS, University of Oklahoma, 120 David L. Boren Blvd., Suite 2100, Norman, OK 73072. E-mail: heather.moser@noaa.gov

Abstract

Satellite-based precipitation estimates are a vital resource for hydrologic applications in data-sparse regions of the world, particularly at daily or longer time scales. With the launch of a new generation of high-resolution imagers on geostationary platforms such as the Geostationary Operational Environmental Satellite series R (GOES-R), an opportunity exists to advance the detection and estimation of flash-flood-scale precipitation events from space beyond what is currently available. Because visible and infrared sensors can only observe cloud-top properties, many visible- and infrared-band-based rainfall algorithms attempt to first classify clouds before deriving a rain rate. This study uses a 2-yr database of cloud-top properties from proxy Advanced Baseline Imager radiances from GOES-R matched to surface precipitation types from the Multi-Radar Multi-Sensor (MRMS) system to develop a naïve Bayesian precipitation type classifier for the four major types of precipitation in MRMS: stratiform, convective, tropical, and hail. Evaluation of the naïve Bayesian precipitation type product showed a bias toward classifying convective and stratiform at the expense of tropical and hail. The tropical and hail classes in MRMS are derived based on the vertical structure and magnitude of radar reflectivity, which may not translate to an obvious signal at cloud top for a satellite-based algorithm. However, the satellite-based product correctly classified the hail areas as being convective in nature for the vast majority of missed hail events.

Corresponding author address: Heather Grams, CIMMS, University of Oklahoma, 120 David L. Boren Blvd., Suite 2100, Norman, OK 73072. E-mail: heather.moser@noaa.gov
Save