• Ashley, S. T., , and Ashley W. S. , 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, doi:10.1175/2007JAMC1611.1.

    • Search Google Scholar
    • Export Citation
  • Austin, G., , and Bellon A. , 1982: Very-short-range forecasting of precipitation by the objective extrapolation of radar and satellite data. Nowcasting, K. A. Browning, Ed., Academic Press, 177–190.

  • Berne, A., , Delrieu G. , , Creutin J. D. , , and Obled C. , 2004: Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol., 299, 166179, doi:10.1016/S0022-1694(04)00363-4.

    • Search Google Scholar
    • Export Citation
  • Bhaskar, A., , and Welty C. , 2012: Water balances along an urban-to-rural gradient of metropolitan Baltimore. Environ. Eng. Geosci., 18, 3750, doi:10.2113/gseegeosci.18.1.37.

    • Search Google Scholar
    • Export Citation
  • Booth, D. B., 1990: Stream-channel incision following drainage basin urbanization. J. Amer. Water Resour. Assoc., 26, 407417, doi:10.1111/j.1752-1688.1990.tb01380.x.

    • Search Google Scholar
    • Export Citation
  • Bornstein, R., , and Lin Q. , 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516, doi:10.1016/S1352-2310(99)00374-X.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., , and Wiener G. , 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C., , Brooks H. , , and Maddox R. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsner, J., , Drag W. , , and Last J. , 1989: Synoptic weather patterns associated with the Milwaukee, Wisconsin flash flood of 6 August 1986. Wea. Forecasting, 4, 537554, doi:10.1175/1520-0434(1989)004<0537:SWPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Javier, J. R. N., , Smith J. A. , , England J. , , Baeck M. L. , , Steiner M. , , and Ntelekos A. A. , 2007: Climatology of extreme rainfall and flooding from orographic thunderstorm systems in the upper Arkansas River basin. Water Resour. Res., 43, W10410, doi:10.1029/2006WR005093.

    • Search Google Scholar
    • Export Citation
  • Jessup, S., , and Colucci S. , 2012: Organization of flash-flood-producing precipitation in the northeast United States. Wea. Forecasting, 27, 345361, doi:10.1175/WAF-D-11-00026.1.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and et al. , 2011: Towards better utilization of NEXRAD data in hydrology: An overview of Hydro-NEXRAD. J. Hydroinform., 13, 255266, doi:10.2166/hydro.2010.056.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , and Smith T. , 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 25, 701709, doi:10.1175/2009WAF2222330.1.

    • Search Google Scholar
    • Export Citation
  • Li, D., , Bou-Zeid E. , , Baeck M. , , Jessup S. , , and Smith J. , 2013: Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. J. Hydrometeor., 14, 10981118, doi:10.1175/JHM-D-12-0154.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., , Chappell C. F. , , and Hoxit L. R. , 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Meierdiercks, K. L., , Smith J. A. , , Baeck M. L. , , and Miller A. J. , 2010: Heterogeneity of hydrologic response in urban watersheds. J. Amer. Water Resour. Assoc., 46, 12211237, doi:10.1111/j.1752-1688.2010.00487.x.

    • Search Google Scholar
    • Export Citation
  • Mooney, L., 1983: Applications and implications of fatality statistics to the flash flood problem. Preprints, Fifth Conf. on Hydrometeorology, Tulsa, OK, Amer. Meteor. Soc., 127129.

  • Morin, E., , Enzel Y. , , Shamir U. , , and Garti R. , 2001: The characteristic time scale for basin hydrological response using radar data. J. Hydrol., 252, 8599, doi:10.1016/S0022-1694(01)00451-6.

    • Search Google Scholar
    • Export Citation
  • Nelson, P. A., , Smith J. A. , , and Miller A. J. , 2006: Evolution of channel morphology and hydrologic response in an urbanizing drainage basin. Earth Surf. Processes Landforms, 31, 10631079, doi:10.1002/esp.1308.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., , Pyle P. , , Lei M. , , Arya S. P. , , Kishtawal C. M. , , Sheperd M. , , Chen F. , , and Wolfe B. , 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., , Smith J. A. , , and Krajewski W. F. , 2007: Climatological analyses of thunderstorms and flash floods in the Baltimore metropolitan region. J. Hydrometeor., 8, 88101, doi:10.1175/JHM558.1.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., , Smith J. A. , , Baeck M. L. , , Krajewski W. F. , , Miller A. J. , , and Goska R. , 2008: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore, MD, metropolitan region. Water Resour. Res., 44, W08446, doi:10.1029/2007WR006346.

    • Search Google Scholar
    • Export Citation
  • Ogden, F. L., , Sharif H. O. , , Senarath S. U. S. , , Smith J. A. , , Baeck M. L. , , and Richardson J. R. , 2000: Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997. J. Hydrol., 228, 82100, doi:10.1016/S0022-1694(00)00146-3.

    • Search Google Scholar
    • Export Citation
  • Paul, M. J., , and Meyer J. L. , 2001: Streams in the urban landscape. Annu. Rev. Ecol. Syst., 32, 333365, doi:10.1146/annurev.ecolsys.32.081501.114040.

    • Search Google Scholar
    • Export Citation
  • Peleg, N., , and Morin E. , 2012: Convective rain cells: Radar-derived spatiotemporal characteristics and synoptic patterns over the eastern Mediterranean. J. Geophys. Res., 117, D15116, doi:10.1029/2011JD017353.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and et al. , 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191216, doi:10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pontrelli, M. D., , Bryan G. , , and Fritsch J. M. , 1999: The Madison County flash flood of 27 June 1995. Wea. Forecasting, 14, 384404, doi:10.1175/1520-0434(1999)014<0384:TMCVFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y. H., , Smth J. A. , , Baeck M. L. , , and Bou-Zeid E. , 2016: The influence of land-surface heterogeneities on heavy convective rainfall in the Baltimore–Washington metropolitan area. Mon. Wea. Rev., 144, 553573, doi:10.1175/MWR-D-15-0192.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and Johnson R. H. , 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and Johnson R. H. , 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, doi:10.1175/2008MWR2471.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, B., , Chappell C. , , Togstad W. , , and Zhong X. , 1990: The Minneapolis flash flood: Meteorological analysis and operational response. Wea. Forecasting, 5, 321, doi:10.1175/1520-0434(1990)005,0003:TMFFMA.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwartz, S., , and Smith B. , 2014: Slowflow fingerprints of urban hydrology. J. Hydrol., 515, 116128, doi:10.1016/j.jhydrol.2014.04.019.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of the current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, doi:10.1175/EI156.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. K., , and Smith J. A. , 2015: The flashiest watersheds in the contiguous. J. Hydrometeor., 16, 23652381, doi:10.1175/JHM-D-14-0217.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. K., , Smith J. A. , , Baeck M. L. , , Villarini G. , , and Wright D. B. , 2013: Spectrum of storm event hydrologic response in urban watersheds. Water Resour. Res., 49, 26492663, doi:10.1002/wrcr.20223.

    • Search Google Scholar
    • Export Citation
  • Smith, B. K., , Smith J. A. , , Baeck M. L. , , and Miller A. J. , 2015: Exploring storage and runoff generation processes for urban flooding through a physically based watershed model. Water Resour. Res., 51, 15521569, doi:10.1002/2014WR016085.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , Miller A. J. , , Baeck M. L. , , Nelson P. A. , , Fisher G. T. , , and Meierdiercks K. L. , 2005: Extraordinary flood response of a small urban watershed to short duration convective rainfall. J. Hydrometeor., 6, 599617, doi:10.1175/JHM426.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , Baeck M. L. , , Villarini G. , , Welty C. , , Miller A. J. , , and Krajewski W. F. , 2012: Analysis of a long-term, high-resolution radar rainfall data set for the Baltimore metropolitan area. Water Resour. Res., 48, W04504, doi:10.1029/2011WR010641.

    • Search Google Scholar
    • Export Citation
  • Tapia, A., , Smith J. , , and Dixon M. , 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 14971509, doi:10.1175/1520-0450(1998)037<1497:EOCRFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorndahl, S., , Smith J. A. , , Baeck M. , , and Krajewski W. , 2014: Analyses of the spatial and temporal structures of heavy rainfall from a catalogue of high-resolution radar rainfall fields. Atmos. Res., 144, 111125, doi:10.1016/j.atmosres.2014.03.013.

    • Search Google Scholar
    • Export Citation
  • Wright, D. B., , Smith J. A. , , Villarini G. , , and Baeck M. L. , 2012: Hydroclimatology of flash flooding in Atlanta. Water Resour. Res., 48, W04524, doi:10.1029/2011WR011371.

    • Search Google Scholar
    • Export Citation
  • Yang, L., , Smith J. A. , , Wright D. B. , , Baeck M. L. , , and Villarini G. , 2013: Urbanization and climate change: An examination of nonstationarities in urban flooding. J. Hydrometeor., 14, 17911809, doi:10.1175/JHM-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Yeung, J., , Smith J. , , Baeck M. , , and Villarini G. , 2015: Lagrangian analyses of rainfall structure and evolution for organized thunderstorm systems in the urban corridor of the northeastern United States. J. Hydrometeor., 16, 15751595, doi:10.1175/JHM-D-14-0095.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 8
PDF Downloads 49 49 10

Flash Flood–Producing Storm Properties in a Small Urban Watershed

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

The structure and evolution of flash flood–producing storms over a small urban watershed in the mid-Atlantic United States with a prototypical flash flood response is examined. Lagrangian storm properties are investigated through analyses of the 32 storms that produced the largest peak discharges in Moores Run between January 2000 and May 2014. The Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) algorithm is used to track storm characteristics over their life cycle with a focus on storm size, movement, intensity, and location. First, the 13 June 2003 and 1 June 2006 storms, which produced the two largest peak discharges for the study period, are analyzed. Heavy rainfall for the 13 June 2003 and 1 June 2006 storms were caused by a collapsing thunderstorm cell and a slow-moving, low-echo centroid storm. Analyses of the 32 storms show that collapsing storm cells play an important role in peak rainfall rate production and flash flooding. Storm motion is predominantly southwest-to-northeast, and approximately half of the storms exhibited some linear organization. Mean storm total rainfall for the 32 storms displayed an asymmetric distribution around Moores Run, with sharply decreasing gradients southwest of the watershed (upwind and into the city) and increased rainfall to the northeast (downwind and away from the city). Results indicate urban modification of rainfall in flash flood–producing storms. There was no evidence that the storms split around Baltimore. Flood-producing rainfall was highly concentrated in time; on average, approximately 21% of the storm total rainfall fell within 15 min.

Corresponding author address: Brianne K. Smith, Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210. E-mail: brianne.smith43@brooklyn.cuny.edu

Current affiliation: Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York, Brooklyn, New York.

Abstract

The structure and evolution of flash flood–producing storms over a small urban watershed in the mid-Atlantic United States with a prototypical flash flood response is examined. Lagrangian storm properties are investigated through analyses of the 32 storms that produced the largest peak discharges in Moores Run between January 2000 and May 2014. The Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) algorithm is used to track storm characteristics over their life cycle with a focus on storm size, movement, intensity, and location. First, the 13 June 2003 and 1 June 2006 storms, which produced the two largest peak discharges for the study period, are analyzed. Heavy rainfall for the 13 June 2003 and 1 June 2006 storms were caused by a collapsing thunderstorm cell and a slow-moving, low-echo centroid storm. Analyses of the 32 storms show that collapsing storm cells play an important role in peak rainfall rate production and flash flooding. Storm motion is predominantly southwest-to-northeast, and approximately half of the storms exhibited some linear organization. Mean storm total rainfall for the 32 storms displayed an asymmetric distribution around Moores Run, with sharply decreasing gradients southwest of the watershed (upwind and into the city) and increased rainfall to the northeast (downwind and away from the city). Results indicate urban modification of rainfall in flash flood–producing storms. There was no evidence that the storms split around Baltimore. Flood-producing rainfall was highly concentrated in time; on average, approximately 21% of the storm total rainfall fell within 15 min.

Corresponding author address: Brianne K. Smith, Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210. E-mail: brianne.smith43@brooklyn.cuny.edu

Current affiliation: Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York, Brooklyn, New York.

Save