• Alexander, L., 2011: Climate science: Extreme heat rooted in dry soils. Nat. Geosci., 4, 1213, doi:10.1038/ngeo1045.

  • Alfaro, E. J., , Gershunov A. , , and Cayan D. , 2006: Prediction of summer maximum and minimum temperature over the central and western United States: The roles of soil moisture and sea surface temperature. J. Climate, 19, 14071421, doi:10.1175/JCLI3665.1.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., , Pereira L. S. , , Raes D. , , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Andresen, J. S., , Hilberg S. , , and Kunkel K. , 2012: Historical climate and climate trends in the midwestern USA. U.S. National Climate Assessment Midwest technical input report, GLISA, 18 pp. [Available online at http://glisa.msu.edu/docs/NCA/MTIT_Historical.pdf.]

  • Basara, J. B., , and Crawford K. C. , 2002: Linear relationships between root-zone soil moisture and atmospheric processes in the planetary boundary layer. J. Geophys. Res., 107, 4274, doi:10.1029/2001JD000633.

    • Search Google Scholar
    • Export Citation
  • Bentley, M. L., , and Stallins J. A. , 2008: Synoptic evolution of midwestern US extreme dew point events. Int. J. Climatol., 28, 12131225, doi:10.1002/joc.1626.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, P. J., , and DeGaetano A. T. , 2013: Trends in U.S. surface humidity, 1930–2010. J. Appl. Meteor. Climatol., 52, 147163, doi:10.1175/JAMC-D-12-035.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, D., , Sandstrom M. , , and Bentley M. , 2006: Midwestern high dew point events 1960–2000. Phys. Geogr., 27, 494504, doi:10.2747/0272-3646.27.6.494.

    • Search Google Scholar
    • Export Citation
  • Crimmins, A. J., and et al. , 2016: Appendix 1: Technical support document: Modeling future climate impacts on human health. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, U. S. Global Change Research Program, 287–300, doi:10.7930/J0KH0K83.

  • Davey, C. A., , Pielke R. A. Sr., , and Gallo K. P. , 2006: Differences between near-surface equivalent temperature and temperature trends for the eastern United States: Equivalent temperature as an alternative measure of heat content. Global Planet. Change, 54, 1932, doi:10.1016/j.gloplacha.2005.11.002.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., , Haylock M. R. , , Luterbacher J. , , and Wanner H. , 2007: Doubled length of western European summer heat waves since 1880. J. Geophys. Res., 112, D15103, doi:10.1029/2007JD008510.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., , Pal J. S. , , Giorgi F. , , and Gao X. , 2007: Heat stress identification in the Mediterranean climate change hotspot. Geophys. Res. Lett., 34, L11706, doi:10.1029/2007GL030000.

    • Search Google Scholar
    • Export Citation
  • Fall, S., , Diffenbaugh N. S. , , Niyogi D. , , Pielke R. A. Sr., , and Rochon G. , 2010: Temperature and equivalent temperature over the United States (1979–2005). Int. J. Climatol., 30, 20452054, doi:10.1002/joc.2094.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., , Seneviratne S. I. , , Vidale P. L. , , Lüthi D. , , and Schär C. , 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, doi:10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., , and Quiring S. M. , 2014: In situ soil moisture coupled with extreme temperatures: A study based on the Oklahoma Mesonet. Geophys. Res. Lett., 41, 47274734, doi:10.1002/2014GL060949.

    • Search Google Scholar
    • Export Citation
  • Frich, P., , Alexander L. V. , , Della-Marta P. , , Gleason B. , , Haylock M. , , Klein Tank A. M. G. , , and Peterson T. , 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, doi:10.3354/cr019193.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., , and Ross R. J. , 1999: Climatology and trends of U.S. surface humidity and temperature. J. Climate, 12, 811828, doi:10.1175/1520-0442(1999)012<0811:CATOUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., , Dirmeyer P. A. , , and DelSole T. , 2011: Land surface impacts on subseasonal and seasonal predictability. Geophys. Res. Lett., 38, L24812, doi:10.1029/2011GL049945.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and et al. , 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, doi:10.1038/ngeo1032.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., , and Isard S. A. , 1994: A soil moisture climatology of Illinois. J. Climate, 7, 822833, doi:10.1175/1520-0442(1994)007<0822:ASMCOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., , Reineke B. C. , , and Peppler R. A. , 1994: Illinois Climate Network: Site descriptions, instrumentation, and data management. Circular 178, Illinois State Water Survey, 70 pp. [Available online at http://webh2o.sws.uiuc.edu/pubdoc/C/ISWSC-178.pdf.]

  • Huang, J., , van den Dool H. M. , , and Georgarakos K. P. , 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362, doi:10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., 1989: A surface energy budget view of the 1988 midwestern United States drought. Bound.-Layer Meteor., 48, 217225, doi:10.1007/BF00158325.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , Changnon S. A. , , and Reinke B. C. , 1996: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bull. Amer. Meteor. Soc., 77, 15071518, doi:10.1175/1520-0477(1996)077<1507:TJHWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lauritsen, R. G., , and Rogers J. C. , 2012: U.S. diurnal temperature range variability and regional causal mechanisms, 1901–2002. J. Climate, 25, 72167231, doi:10.1175/JCLI-D-11-00429.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, R., , Jaeger E. B. , , and Seneviratne S. I. , 2010: Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett., 37, L09703, doi:10.1029/2010GL042764.

    • Search Google Scholar
    • Export Citation
  • Meng, L., , and Shen Y. , 2014: On the relationship of soil moisture and extreme temperatures in east China. Earth Interact., 18, doi:10.1175/2013EI000551.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., , van den Berg M. J. , , Teuling A. J. , , and de Jeu R. A. M. , 2012: Soil moisture–temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

    • Search Google Scholar
    • Export Citation
  • Mo, K., 2003: Ensemble canonical correlation prediction of surface prediction over the United States. J. Climate, 16, 16651683, doi:10.1175/1520-0442(2003)016<1665:ECCPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., , and Seneviratne S. I. , 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, doi:10.1073/pnas.1204330109.

    • Search Google Scholar
    • Export Citation
  • Orth, R., , and Seneviratne S. I. , 2014: Using soil moisture forecasts for sub-seasonal summer temperature predictions in Europe. Climate Dyn., 43, 34033418, doi:10.1007/s00382-014-2112-x.

    • Search Google Scholar
    • Export Citation
  • Oswald, E. M., , and Rood R. B. , 2014: A trend analysis of the 1930–2010 extreme heat events in the continental United States. J. Appl. Meteor. Climatol., 53, 565582, doi:10.1175/JAMC-D-13-071.1.

    • Search Google Scholar
    • Export Citation
  • Palecki, M. A., , Changnon S. A. , , and Kunkel K. E. , 2001: The nature and impacts of the July 1999 heat wave in the midwestern United States: Learning from the lessons of 1995. Bull. Amer. Meteor. Soc., 82, 13531367, doi:10.1175/1520-0477(2001)082<1353:TNAIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., , Davey C. , , and Morgan J. , 2004: Assessing “global warming” with surface heat content. Eos, Trans. Amer. Geophys. Union, 85, 210211, doi:10.1029/2004EO210004.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., , Scavia D. , , Downer C. , , Gaden M. , , Iverson L. , , Nordstrom R. , , Patz J. , , and Robertson G. P. , 2014: Midwest. Climate change impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program Rep., 418–440, doi:10.7930/J0G44N6T.

  • Quesada, B., , Vautard R. , , Yiou P. , , Hirschi M. , , and Seneviratne S. I. , 2012: Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Climate Change, 2, 736741, doi:10.1038/nclimate1536.

    • Search Google Scholar
    • Export Citation
  • Sandstrom, M. A., , Lauritesen R. G. , , and Changnon D. , 2004: A central-U.S. summer extreme dew-point climatology (1949–2000). Phys. Geogr., 25, 191207, doi:10.2747/0272-3646.25.3.191.

    • Search Google Scholar
    • Export Citation
  • Schär, C., , Vidale P. L. , , Lüthi D. , , Frei C. , , Häberli C. , , Liniger M. A. , , and Appenzeller C. , 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, doi:10.1038/nature02300.

    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., , Heern Z. A. , , Therrell M. D. , , and Remo J. W. F. , 2015: Assessing trends in lower tropospheric heat content in the central United States using equivalent temperature. Int. J. Climatol., 35, 28282836, doi:10.1002/joc.4175.

    • Search Google Scholar
    • Export Citation
  • Scott, R. W., , Krug E. C. , , and Burch S. L. , 2010: Illinois soil moisture under sod experiment. J. Hydrometeor., 11, 683704, doi:10.1175/2009JHM1130.1.

    • Search Google Scholar
    • Export Citation
  • Semenza, J. C., , McCullough J. E. , , Flanders W. D. , , McGeehin M. A. , , and Lumpkin J. R. , 1999: Excess hospital admissions during the July 1995 heat wave in Chicago. Amer. J. Prev. Med., 16, 269277, doi:10.1016/S0749-3797(99)00025-2.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., , and Kalkstein A. J. , 2010: Seasonal variability in heat-related mortality across the United States. Nat. Hazards, 55, 291305, doi:10.1007/s11069-010-9526-5.

    • Search Google Scholar
    • Export Citation
  • Smoyer, K. E., 1998: A comparative analysis of heat waves and associated mortality in St. Louis, Missouri—1980 and 1995. Int. J. Biometeor., 42, 4450, doi:10.1007/s004840050082.

    • Search Google Scholar
    • Export Citation
  • Sparks, J., , Changnon D. , , and Starke J. , 2002: Changes in the frequency of extreme warm-season dewpoints in northeastern Illinois: Implications for cooling-system design and operation. J. Appl. Meteor., 41, 890898, doi:10.1175/1520-0450(2002)041<0890:CITFOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stéfanon, M., , Drobinski P. , , D’Andrea F. , , Lebeaupin-Brossier C. , , and Bastin S. , 2014: Soil moisture–temperature feedbacks at meso-scale during summer heat waves over western Europe. Climate Dyn., 42, 13091324, doi:10.1007/s00382-013-1794-9.

    • Search Google Scholar
    • Export Citation
  • Vanos, J. K., , Kalkstein L. S. , , and Sanford T. J. , 2015: Detecting synoptic warming trends across the US Midwest and implications to human health and heat-related mortality. Int. J. Climatol., 35, 8596, doi:10.1002/joc.3964.

    • Search Google Scholar
    • Export Citation
  • Wuebbles, D. J., , and Hayhoe K. , 2004: Climate change projections for the United States Midwest. Mitigation Adapt. Strategies Global Change, 9, 335363, doi:10.1023/B:MITI.0000038843.73424.de.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 6
PDF Downloads 27 27 4

Oppressive Heat Events in Illinois Related to Antecedent Wet Soils

View More View Less
  • 1 Department of Geography and Environmental Resources, Southern Illinois University, Carbondale, Illinois
© Get Permissions
Restricted access

Abstract

Extreme heat events have been connected with antecedent soil moisture in many global regions, such that dry soils increase sensible heat content of the near-surface atmosphere and impede precipitation through boundary layer growth. However, negative soil moisture–temperature feedbacks (dry soils = higher temperatures) are founded on investigations of maximum temperature that neglect the potentially important latent heating component provided by soil moisture. In this study, the association of spring soil moisture and subsequent summer oppressive heat events is quantified, defined by equivalent temperature. The advantage of equivalent temperature over maximum temperature is that it accounts for both the temperature and moisture components of atmospheric heat content. Quantile regression and composite analysis are used to determine the association between spring soil moisture and summer oppressive heat events using a 25-yr station observation record in Illinois. A consistent response of summer oppressive heat events to antecedent 5-cm soil moisture anomalies is found at all four stations. The frequency of oppressive summer equivalent temperature events is significantly increased following spring seasons with wetter-than-normal soils compared with spring seasons with dry soils. This provides evidence of a possible positive soil moisture–temperature feedback. Further, it is found that oppressive heat events correspond with the combination of wetter-than-normal spring soils and persistent summertime upper-level ridging to the northeast of the region, thereby leading to the conclusion that abundant-to-surplus spring soil moisture is necessary but not sufficient for the occurrence of oppressive heat in Illinois.

Corresponding author address: Trent Ford, Department of Geography and Environmental Resources, Southern Illinois University, Faner Hall, Mail Code 4514, Carbondale, IL 62901. E-mail: twford@siu.edu

Abstract

Extreme heat events have been connected with antecedent soil moisture in many global regions, such that dry soils increase sensible heat content of the near-surface atmosphere and impede precipitation through boundary layer growth. However, negative soil moisture–temperature feedbacks (dry soils = higher temperatures) are founded on investigations of maximum temperature that neglect the potentially important latent heating component provided by soil moisture. In this study, the association of spring soil moisture and subsequent summer oppressive heat events is quantified, defined by equivalent temperature. The advantage of equivalent temperature over maximum temperature is that it accounts for both the temperature and moisture components of atmospheric heat content. Quantile regression and composite analysis are used to determine the association between spring soil moisture and summer oppressive heat events using a 25-yr station observation record in Illinois. A consistent response of summer oppressive heat events to antecedent 5-cm soil moisture anomalies is found at all four stations. The frequency of oppressive summer equivalent temperature events is significantly increased following spring seasons with wetter-than-normal soils compared with spring seasons with dry soils. This provides evidence of a possible positive soil moisture–temperature feedback. Further, it is found that oppressive heat events correspond with the combination of wetter-than-normal spring soils and persistent summertime upper-level ridging to the northeast of the region, thereby leading to the conclusion that abundant-to-surplus spring soil moisture is necessary but not sufficient for the occurrence of oppressive heat in Illinois.

Corresponding author address: Trent Ford, Department of Geography and Environmental Resources, Southern Illinois University, Faner Hall, Mail Code 4514, Carbondale, IL 62901. E-mail: twford@siu.edu
Save