Building a Multimodel Flood Prediction System with the TIGGE Archive

Ervin Zsótér European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Department of Geography and Environmental Science, University of Reading, Reading, United Kingdom

Search for other papers by Ervin Zsótér in
Current site
Google Scholar
PubMed
Close
,
Florian Pappenberger European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
College of Hydrology and Water Resources, Hohai University, Nanjing, China

Search for other papers by Florian Pappenberger in
Current site
Google Scholar
PubMed
Close
,
Paul Smith European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom

Search for other papers by Paul Smith in
Current site
Google Scholar
PubMed
Close
,
Rebecca Elizabeth Emerton European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Department of Geography and Environmental Science, University of Reading, Reading, United Kingdom

Search for other papers by Rebecca Elizabeth Emerton in
Current site
Google Scholar
PubMed
Close
,
Emanuel Dutra European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Emanuel Dutra in
Current site
Google Scholar
PubMed
Close
,
Fredrik Wetterhall European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Fredrik Wetterhall in
Current site
Google Scholar
PubMed
Close
,
David Richardson European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by David Richardson in
Current site
Google Scholar
PubMed
Close
,
Konrad Bogner European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

Search for other papers by Konrad Bogner in
Current site
Google Scholar
PubMed
Close
, and
Gianpaolo Balsamo European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Gianpaolo Balsamo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the last decade operational probabilistic ensemble flood forecasts have become common in supporting decision-making processes leading to risk reduction. Ensemble forecasts can assess uncertainty, but they are limited to the uncertainty in a specific modeling system. Many of the current operational flood prediction systems use a multimodel approach to better represent the uncertainty arising from insufficient model structure. This study presents a multimodel approach to building a global flood prediction system using multiple atmospheric reanalysis datasets for river initial conditions and multiple TIGGE forcing inputs to the ECMWF land surface model. A sensitivity study is carried out to clarify the effect of using archive ensemble meteorological predictions and uncoupled land surface models. The probabilistic discharge forecasts derived from the different atmospheric models are compared with those from the multimodel combination. The potential for further improving forecast skill by bias correction and Bayesian model averaging is examined. The results show that the impact of the different TIGGE input variables in the HTESSEL/Catchment-Based Macroscale Floodplain model (CaMa-Flood) setup is rather limited other than for precipitation. This provides a sufficient basis for evaluation of the multimodel discharge predictions. The results also highlight that the three applied reanalysis datasets have different error characteristics that allow for large potential gains with a multimodel combination. It is shown that large improvements to the forecast performance for all models can be achieved through appropriate statistical postprocessing (bias and spread correction). A simple multimodel combination generally improves the forecasts, while a more advanced combination using Bayesian model averaging provides further benefits.

Denotes Open Access content.

Corresponding author address: E. Zsótér, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: ervin.zsoter@ecmwf.int

Abstract

In the last decade operational probabilistic ensemble flood forecasts have become common in supporting decision-making processes leading to risk reduction. Ensemble forecasts can assess uncertainty, but they are limited to the uncertainty in a specific modeling system. Many of the current operational flood prediction systems use a multimodel approach to better represent the uncertainty arising from insufficient model structure. This study presents a multimodel approach to building a global flood prediction system using multiple atmospheric reanalysis datasets for river initial conditions and multiple TIGGE forcing inputs to the ECMWF land surface model. A sensitivity study is carried out to clarify the effect of using archive ensemble meteorological predictions and uncoupled land surface models. The probabilistic discharge forecasts derived from the different atmospheric models are compared with those from the multimodel combination. The potential for further improving forecast skill by bias correction and Bayesian model averaging is examined. The results show that the impact of the different TIGGE input variables in the HTESSEL/Catchment-Based Macroscale Floodplain model (CaMa-Flood) setup is rather limited other than for precipitation. This provides a sufficient basis for evaluation of the multimodel discharge predictions. The results also highlight that the three applied reanalysis datasets have different error characteristics that allow for large potential gains with a multimodel combination. It is shown that large improvements to the forecast performance for all models can be achieved through appropriate statistical postprocessing (bias and spread correction). A simple multimodel combination generally improves the forecasts, while a more advanced combination using Bayesian model averaging provides further benefits.

Denotes Open Access content.

Corresponding author address: E. Zsótér, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: ervin.zsoter@ecmwf.int
Save
  • Agustí-Panareda, A., Balsamo G. , and Beljaars A. , 2010: Impact of improved soil moisture on the ECMWF precipitation forecast in West Africa. Geophys. Res. Lett., 37, L20808, doi:10.1029/2010GL044748.

    • Search Google Scholar
    • Export Citation
  • Ajami, N. K., Duan Q. , and Sorooshian S. , 2007: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res., 43, W01403, doi:10.1029/2005WR004745.

    • Search Google Scholar
    • Export Citation
  • Alfieri, L., Burek P. , Dutra E. , Krzeminski B. , Muraro D. , Thielen J. , and Pappenberger F. , 2013: GloFAS—Global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci., 17, 11611175, doi:10.5194/hess-17-1161-2013.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Boussetta S. , Lopez P. , and Ferranti L. , 2010: Evaluation of ERA-Interim and ERA-Interim-GPCP-rescaled precipitation over the U.S.A. ERA Rep. 01/2010, ECMWF, 10 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2010/7926-evaluation-era-interim-and-era-interim-gpcp-rescaled-precipitation-over-usa.pdf.]

  • Balsamo, G., Pappenberger F. , Dutra E. , Viterbo P. , and van den Hurk B. , 2011: A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle. Hydrol. Processes, 25, 10461054, doi:10.1002/hyp.7808.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Bao, H. H., and Zhao O. , 2012: Development and application of an atmospheric–hydrologic–hydraulic flood forecasting model driven by TIGGE ensemble forecasts. Acta Meteor. Sin., 26, 93102, doi:10.1007/s13351-012-0109-0.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble. Bull. Amer. Meteor. Soc., 91, 10591072, doi:10.1175/2010BAMS2853.1.

    • Search Google Scholar
    • Export Citation
  • Candille, G., and Talagrand O. , 2005: Evaluation of probabilistic prediction systems for a scalar variable. Quart. J. Roy. Meteor. Soc., 131, 21312150, doi:10.1256/qj.04.71.

    • Search Google Scholar
    • Export Citation
  • Cane, D., Ghigo S. , Rabuffetti D. , and Milelli M. , 2013: Real-time flood forecasting coupling different postprocessing techniques of precipitation forecast ensembles with a distributed hydrological model. The case study of May 2008 flood in western Piemonte, Italy. Nat. Hazards Earth Syst. Sci., 13, 211220, doi:10.5194/nhess-13-211-2013.

    • Search Google Scholar
    • Export Citation
  • Cloke, H. L., and Pappenberger F. , 2009: Ensemble flood forecasting: A review. J. Hydrol., 375, 613626, doi:10.1016/j.jhydrol.2009.06.005.

    • Search Google Scholar
    • Export Citation
  • Coccia, G., and Todini E. , 2011: Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol. Earth Syst. Sci., 15, 32533274, doi:10.5194/hess-15-3253-2011.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Demargne, J., and Coauthors, 2014: The science of NOAA’s Operational Hydrologic Ensemble Forecast Service. Bull. Amer. Meteor. Soc., 95, 7998, doi:10.1175/BAMS-D-12-00081.1.

    • Search Google Scholar
    • Export Citation
  • Dong, L., Xiong L. , and Yu K. , 2013: Uncertainty analysis of multiple hydrologic models using the Bayesian model averaging method. J. Appl. Math., 2013, 346045, doi:10.1155/2013/346045.

    • Search Google Scholar
    • Export Citation
  • Donnelly, C., Andersson J. C. M. , and Arheimer B. , 2015: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J., 61, 255–273, doi:10.1080/02626667.2015.1027710.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Schär C. , Viterbo P. , and Miranda P. M. A. , 2011: Land–atmosphere coupling associated with snow cover. Geophys. Res. Lett., 38, L15707, doi:10.1029/2011GL048435.

    • Search Google Scholar
    • Export Citation
  • Emerton, R. E., and Coauthors, 2016: Continental and global scale flood forecasting systems. Wiley Interdiscip. Rev.: Water, 3, 391–418, doi:10.1002/wat2.1137.

    • Search Google Scholar
    • Export Citation
  • Fraley, C., Raftery A. E. , and Gneiting T. , 2010: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Mon. Wea. Rev., 138, 190202, doi:10.1175/2009MWR3046.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and Katzfuss M. , 2014: Probabilistic forecasting. Annu. Rev. Stat. Appl., 1, 125151, doi:10.1146/annurev-statistics-062713-085831.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, doi:10.1175/2011JHM1324.1.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., Buizza R. , Hamill T. M. , Leutbecher M. , and Palmer T. N. , 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 18141827, doi:10.1002/qj.1895.

    • Search Google Scholar
    • Export Citation
  • He, Y., Wetterhall F. , Cloke H. L. , Pappenberger F. , Wilson M. , Freer J. , and McGregor G. , 2009: Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions. Meteor. Appl., 16, 91101, doi:10.1002/met.132.

    • Search Google Scholar
    • Export Citation
  • He, Y., and Coauthors, 2010: Ensemble forecasting using TIGGE for the July–September 2008 floods in the Upper Huai catchment: A case study. Atmos. Sci. Lett., 11, 132138, doi:10.1002/asl.270.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Gu G. , 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., Kishtawal C. M. , LaRow T. E. , Bachiochi D. R. , Zhang Z. , Williford C. E. , Gadgil S. , and Surendran S. , 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 15481550, doi:10.1126/science.285.5433.1548.

    • Search Google Scholar
    • Export Citation
  • Krzysztofowicz, R., 1997: Transformation and normalization of variates with specified distributions. J. Hydrol., 197, 286292, doi:10.1016/S0022-1694(96)03276-3.

    • Search Google Scholar
    • Export Citation
  • Liang, Z., Wang D. , Guo Y. , Zhang Y. , and Dai R. , 2013: Application of Bayesian model averaging approach to multimodel ensemble hydrologic forecasting. J. Hydrol. Eng., 18, 14261436, doi:10.1061/(ASCE)HE.1943-5584.0000493.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Duan Q. , Zhao L. , Ye A. , Tao Y. , Miao C. , Mu X. , and Schaake J. C. , 2013: Evaluating the predictive skill of post-processed NCEP GFS ensemble precipitation forecasts in China’s Huai River basin. Hydrol. Processes, 27, 5774, doi:10.1002/hyp.9496.

    • Search Google Scholar
    • Export Citation
  • Olsson, J., and Lindström G. , 2008: Evaluation and calibration of operational hydrological ensemble forecasts in Sweden. J. Hydrol., 350, 1424, doi:10.1016/j.jhydrol.2007.11.010.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., Bartholmes J. , Thielen J. , Cloke H. L. , Buizza R. , and de Roo A. , 2008: New dimensions in early flood warning across the globe using grand-ensemble weather predictions. Geophys. Res. Lett., 35, L10404, doi:10.1029/2008GL033837.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., Gneiting T. , Balabdaoui F. , and Polakowski M. , 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Toure A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schefzik, R., Thorarinsdottir L. T. , and Gneiting T. , 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616640, doi:10.1214/13-STS443.

    • Search Google Scholar
    • Export Citation
  • Thielen, J., Bartholmes J. , Ramos M. H. , and de Roo A. , 2009: The European Flood Alert System—Part 1: Concept and development. Hydrol. Earth Syst. Sci., 13, 125140, doi:10.5194/hess-13-125-2009.

    • Search Google Scholar
    • Export Citation
  • Todini, E., 2008: A model conditional processor to assess predictive uncertainty in flood forecasting. Int. J. River Basin Manage., 6, 123137, doi:10.1080/15715124.2008.9635342.

    • Search Google Scholar
    • Export Citation
  • Van Der Knijff, J. M., Younis J. M. J. , and De Roo A. P. J. , 2010: LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci., 24, 189212, doi:10.1080/13658810802549154.

    • Search Google Scholar
    • Export Citation
  • Velázquez, J. A., Anctil F. , Ramos M. H. , and Perrin C. , 2011: Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures. Adv. Geosci., 29, 3342, doi:10.5194/adgeo-29-33-2011.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., and Robinson B. A. , 2007: Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res., 43, W01411, doi:10.1029/2005WR004838.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., Kanae S. , Kim H. , and Oki T. , 2011: A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res., 47, W04501, doi:10.1029/2010WR009726.

    • Search Google Scholar
    • Export Citation
  • Zsótér, E., 2006: Recent developments in extreme weather forecasting. ECMWF Newsletter, ECMWF, Reading, United Kingdom, 8–17. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2006/14618-newsletter-no107-spring-2006.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 991 239 22
PDF Downloads 263 80 2