The Regional Water Cycle and Heavy Spring Rainfall in Iowa: Observational and Modeling Analyses from the IFloodS Campaign

Young-Hee Ryu Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Young-Hee Ryu in
Current site
Google Scholar
PubMed
Close
,
James A. Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
,
Mary Lynn Baeck Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Mary Lynn Baeck in
Current site
Google Scholar
PubMed
Close
,
Luciana K. Cunha Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Luciana K. Cunha in
Current site
Google Scholar
PubMed
Close
,
Elie Bou-Zeid Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Elie Bou-Zeid in
Current site
Google Scholar
PubMed
Close
, and
Witold Krajewski IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Witold Krajewski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The regional water cycle is examined with a special focus on water vapor transport in Iowa during the Iowa Flood Studies (IFloodS) campaign period, April–June 2013. The period had exceptionally large rainfall accumulations, and rainfall was distributed over an unusually large number of storm days. Radar-derived rainfall fields covering the 200 000 km2 study region; precipitable water from a network of global positioning system (GPS) measurements; and vertically integrated water vapor flux derived from GPS precipitable water, radar velocity–azimuth display (VAD) wind profiles, and radiosonde humidity profiles are utilized. They show that heavy rainfall is relatively weakly correlated with precipitable water and precipitable water change, with somewhat stronger direct relationships to water vapor flux. Thermodynamic properties tied to the vertical distribution of water vapor play an important role in determining heavy rainfall distribution, especially for periods of strong southerly water vapor flux. The diurnal variation of the water cycle during the IFloodS field campaign is pronounced, especially for rainfall and water vapor flux. To examine the potential effects of relative humidity in the lower atmosphere on heavy rainfall, numerical simulations are performed. It is found that low-level moisture can greatly affect heavy rainfall amount under favorable large-scale environmental conditions.

Corresponding author address: Young-Hee Ryu, Dept. of Civil and Environmental Engineering, Princeton University, E314, EQuad, Princeton, NJ 08544. E-mail: younghee@princeton.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Abstract

The regional water cycle is examined with a special focus on water vapor transport in Iowa during the Iowa Flood Studies (IFloodS) campaign period, April–June 2013. The period had exceptionally large rainfall accumulations, and rainfall was distributed over an unusually large number of storm days. Radar-derived rainfall fields covering the 200 000 km2 study region; precipitable water from a network of global positioning system (GPS) measurements; and vertically integrated water vapor flux derived from GPS precipitable water, radar velocity–azimuth display (VAD) wind profiles, and radiosonde humidity profiles are utilized. They show that heavy rainfall is relatively weakly correlated with precipitable water and precipitable water change, with somewhat stronger direct relationships to water vapor flux. Thermodynamic properties tied to the vertical distribution of water vapor play an important role in determining heavy rainfall distribution, especially for periods of strong southerly water vapor flux. The diurnal variation of the water cycle during the IFloodS field campaign is pronounced, especially for rainfall and water vapor flux. To examine the potential effects of relative humidity in the lower atmosphere on heavy rainfall, numerical simulations are performed. It is found that low-level moisture can greatly affect heavy rainfall amount under favorable large-scale environmental conditions.

Corresponding author address: Young-Hee Ryu, Dept. of Civil and Environmental Engineering, Princeton University, E314, EQuad, Princeton, NJ 08544. E-mail: younghee@princeton.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Save
  • Baeck, M. L., and Smith J. A. , 1995: Climatological analysis of manually digitized radar data for the United States east of the Rocky Mountains. Water Resour. Res., 31, 30333049, doi:10.1029/95WR01946.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and Mitchell K. E. , 1998: Progress on the NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, 2nd Symp. on Integrated Observing Systems, Phoenix, AZ, Amer. Meteor. Soc., 1011.

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and Rasmusson E. M. , 1999: Mississippi moisture budgets on regional scales. Mon. Wea. Rev., 127, 26542673, doi:10.1175/1520-0493(1999)127<2654:MMBORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bermowitz, R. J., 1975: An application of model output statistics to forecasting quantitative precipitation. Mon. Wea. Rev., 103, 149153, doi:10.1175/1520-0493(1975)103<0149:AAOMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. , Beljaars A. C. , Miller M. J. , and Viterbo P. A. , 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, doi:10.1029/95JD02135.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., Peters M. E. , and Back L. E. , 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Budikova, D., Coleman J. S. M. , Strope S. A. , and Austin A. , 2010: Hydroclimatology of the 2008 Midwest floods. Water Resour. Res., 46, W12524, doi:10.1029/2010WR009206.

  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Zhou T. , Yu R. , and Li J. , 2009: Summer rain fall duration and its diurnal cycle over the US Great Plains. Int. J. Climatol., 29, 15151519, doi:10.1002/joc.1806.

    • Search Google Scholar
    • Export Citation
  • Coleman, J. S. M., and Budikova D. , 2010: Atmospheric aspects of the 2008 Midwest floods: A repeat of 1993? Int. J. Climatol., 30, 16451667, doi:10.1002/joc.2009.

    • Search Google Scholar
    • Export Citation
  • Colman, B. R., 1990: Thunderstorms above frontal surfaces in environments without positive CAPE. Part I: A climatology. Mon. Wea. Rev., 118, 11031121, doi:10.1175/1520-0493(1990)118<1103:TAFSIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., Smith J. A. , Krajewski W. F. , Baeck M. L. , and Seo B.-C. , 2015: NEXRAD NWS polarimetric precipitation product evaluation for IFloodS. J. Hydrometeor., 16, 16761699, doi:10.1175/JHM-D-14-0148.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Giorgi F. , and Trenberth K. E. , 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, doi:10.1029/98JD02720.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Wang J. , Ware R. H. , and Van Hove T. , 2002: Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res., 107, 4090, doi:10.1029/2001JD000642.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Kinter J. L. , 2010: Floods over the U.S. Midwest: A regional water cycle perspective. J. Hydrometeor., 11, 11721181, doi:10.1175/2010JHM1196.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism 1. Theory and observations. Water Resour. Res., 34, 765776, doi:10.1029/97WR03499.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. Water Resour. Res., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., Melsness M. , and Raddatz R. , 2010: Observed and modeled growing-season diurnal precipitable water vapor in south-central Canada. J. Appl. Meteor. Climatol., 49, 23012314, doi:10.1175/2010JAMC2443.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Soden B. J. , 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and Schubert S. D. , 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806, doi:10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Yao Y. , Yarosh E. S. , Janowiak J. E. , and Mo K. C. , 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, doi:10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., Eischeid J. , Kumar A. , Leung R. , Mariotti A. , Mo K. , Schubert S. , and Seager R. , 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Junker, N. W., Schneider R. S. , and Fauver S. L. , 1999: A study of heavy rainfall events during the great Midwest flood of 1993. Wea. Forecasting, 14, 701712, doi:10.1175/1520-0434(1999)014<0701:ASOHRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Karl T. R. , Easterling D. R. , Redmond K. , Young J. , Yin X. , and Hennon P. , 2013: Probable maximum precipitation and climate change. Geophys. Res. Lett., 40, 14021408, doi:10.1002/grl.50334.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and Fritsch J. M. , 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 27562776, doi:10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and Villarini G. , 2013: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, doi:10.1175/JCLI-D-13-00212.1.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., Schubert S. D. , Suarez M. J. , Schemm J.-K. E. , Pan H.-L. , Han J. , and Yoo S.-H. , 2008: Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. J. Geophys. Res., 113, D02111, doi:10.1029/2007JD008984.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Maddox, R. A., Hoxit L. R. , Chappell C. F. , and Caracena F. , 1978: Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375389, doi:10.1175/1520-0493(1978)106<0375:COMAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Market, P., and Allen S. , 2003: Precipitation efficiency of warm-season midwestern mesoscale convective systems. Wea. Forecasting, 18, 12731285, doi:10.1175/1520-0434(2003)018<1273:PEOWMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and Cotton W. R. , 1989: The precipitation life cycle of mesoscale convective complexes over the central United States. Mon. Wea. Rev., 117, 784808, doi:10.1175/1520-0493(1989)117<0784:TPLCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and Cohen C. , 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748, doi:10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., Nogues-Paegle J. , and Paegle J. , 1995: Physical mechanisms of the 1993 summer floods. J. Atmos. Sci., 52, 879895, doi:10.1175/1520-0469(1995)052<0879:PMOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., Nogues-Paegle J. , and Higgins R. W. , 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 30283046, doi:10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., Glass F. H. , Graves C. E. , Rochette S. M. , and Singer M. J. , 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878, doi:10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E., 1967: Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95, 403426, doi:10.1175/1520-0493(1967)095<0403:AWVTAT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E., 1968: Atmospheric water vapor transport and the water balance of North America: II. Large-scale water balance investigations. Mon. Wea. Rev., 96, 720734, doi:10.1175/1520-0493(1968)096<0720:AWVTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E., 1971: A study of the hydrology of eastern North America using atmospheric vapor flux data. Mon. Wea. Rev., 99, 119135, doi:10.1175/1520-0493(1971)099<0119:ASOTHO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., Smith J. A. , and Bou-Zeid E. , 2015: On the climatology of precipitable water and water vapor flux in the Mid-Atlantic region of the United States. J. Hydrometeor., 16, 7087, doi:10.1175/JHM-D-14-0030.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 25072524, doi:10.1175/JAS-D-14-0389.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, J. A., and Baeck M. L. , 2015: “Prophetic vision, vivid imagination”: The 1927 Mississippi River flood. Water Resour. Res., 51, 99649994, doi:10.1002/2015WR017927.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Villarini G. , Wright D. B. , and Krajewski W. , 2013: Extreme flood response: The June 2008 flooding in Iowa. J. Hydrometeor., 14, 18101825, doi:10.1175/JHM-D-12-0191.1.

    • Search Google Scholar
    • Export Citation
  • Song, J., Liao K. , Coulter R. L. , and Lesht B. M. , 2005: Climatology of the low-level jet at the Southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteor., 44, 15931606, doi:10.1175/JAM2294.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., and Schumacher R. S. , 2014: A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses. Mon. Wea. Rev., 142, 31473162, doi:10.1175/MWR-D-13-00345.1.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., Shiogama H. , and Emori S. , 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107, 571575, doi:10.1073/pnas.0903186107.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Guillemot C. J. , 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, doi:10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Dai A. , Rasmussen R. M. , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Davis C. A. , and Ahijevych D. A. , 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 10661090, doi:10.1175/2009JAS3247.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Smith J. A. , Baeck M. L. , and Krajewski W. F. , 2011a: Examining flood frequency distributions in the Midwest U.S. J. Amer. Water Resour. Assoc., 47, 447463, doi:10.1111/j.1752-1688.2011.00540.x.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Smith J. A. , Baeck M. L. , Vitolo R. , Stephenson D. , and Krajewski W. , 2011b: On the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol., 400, 103120, doi:10.1016/j.jhydrol.2011.01.027.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., and Chen T.-C. , 2009: The late-spring maximum of rainfall over the U.S. Central Plains and the role of the low-level jet. J. Climate, 22, 46964709, doi:10.1175/2009JCLI2719.1.

    • Search Google Scholar
    • Export Citation
  • Ware, R. H., and Coauthors, 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677694, doi:10.1175/1520-0477(2000)081<0677:SARNGN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO, 2009: Manual on estimation of probable maximum precipitation (PMP). Tech. Rep. WMO-1045, 257 pp. [Available online at http://www.wmo.int/pages/prog/hwrp/publications/PMP/WMO%201045%20en.pdf.]

  • Wu, P., Hamada J.-I. , Mori S. , Tauhid Y. I. , and Yamanaka M. D. , 2003: Diurnal variation of precipitable water over a mountainous area of Sumatra Island. J. Appl. Meteor., 42, 11071115, doi:10.1175/1520-0450(2003)042<1107:DVOPWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, W., Smith J. A. , and Bradley A. A. , 1997: Numerical simulation of a heavy rainfall event during the PRE-STORM experiment. Water Resour. Res., 33, 783799, doi:10.1029/96WR03036.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 297 152 9
PDF Downloads 130 55 5