First Evaluation of the Day-1 IMERG over the Upper Blue Nile Basin

Dejene Sahlu Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia

Search for other papers by Dejene Sahlu in
Current site
Google Scholar
PubMed
Close
,
Efthymios I. Nikolopoulos Department of Physics, University of Athens, and Innovative Technologies Center S.A., Athens, Greece

Search for other papers by Efthymios I. Nikolopoulos in
Current site
Google Scholar
PubMed
Close
,
Semu A. Moges School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia

Search for other papers by Semu A. Moges in
Current site
Google Scholar
PubMed
Close
,
Emmanouil N. Anagnostou Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Emmanouil N. Anagnostou in
Current site
Google Scholar
PubMed
Close
, and
Dereje Hailu School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia

Search for other papers by Dereje Hailu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work presents a first evaluation of the performance of the Integrated Multisatellite Retrievals for GPM (IMERG) precipitation product over the upper Blue Nile basin of Ethiopia. One of the unique features of this study is the availability of hourly rainfall measurements from an experimental rain gauge network in the area. Both the uncalibrated and calibrated versions of IMERG are evaluated, and their performance is contrasted against another high-resolution satellite product, which is the Kalman filter (KF)-based Climate Prediction Center (CPC) morphing technique (CMORPH). The analysis is performed for hourly and daily time scales and at spatial scales that correspond to the nominal resolution of satellite products, which is 0.1° spatial resolution. The period analyzed is focused on a single wet season (May–October 2014). Evaluation is performed using several statistical and categorical error metrics, as well as spatial correlation analysis to assess the ability of satellite products to represent spatial variability of precipitation in the area. Results show that both IMERG products have a better bias ratio and correlation coefficient on both time scales as compared to CMORPH. Comparison statistics show a slight improvement in the skill of detecting rainfall events in IMERG products compared to CMORPH. Results also show a decreasing trend in the detection ability of satellite products for increasing threshold values, highlighting the need to further improve detection during heavy precipitation.

Corresponding author address: Prof. Semu Moges, P.O. Box 385, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia. E-mail: semu_moges_2000@yahoo.com

Abstract

This work presents a first evaluation of the performance of the Integrated Multisatellite Retrievals for GPM (IMERG) precipitation product over the upper Blue Nile basin of Ethiopia. One of the unique features of this study is the availability of hourly rainfall measurements from an experimental rain gauge network in the area. Both the uncalibrated and calibrated versions of IMERG are evaluated, and their performance is contrasted against another high-resolution satellite product, which is the Kalman filter (KF)-based Climate Prediction Center (CPC) morphing technique (CMORPH). The analysis is performed for hourly and daily time scales and at spatial scales that correspond to the nominal resolution of satellite products, which is 0.1° spatial resolution. The period analyzed is focused on a single wet season (May–October 2014). Evaluation is performed using several statistical and categorical error metrics, as well as spatial correlation analysis to assess the ability of satellite products to represent spatial variability of precipitation in the area. Results show that both IMERG products have a better bias ratio and correlation coefficient on both time scales as compared to CMORPH. Comparison statistics show a slight improvement in the skill of detecting rainfall events in IMERG products compared to CMORPH. Results also show a decreasing trend in the detection ability of satellite products for increasing threshold values, highlighting the need to further improve detection during heavy precipitation.

Corresponding author address: Prof. Semu Moges, P.O. Box 385, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia. E-mail: semu_moges_2000@yahoo.com
Save
  • AghaKouchak, A., and Mehran A. , 2013: Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resour. Res., 49, 71447149, doi:10.1002/wrcr.20498.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Mehran A. , Norouzi H. , and Behrangi A. , 2012: Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., Maggioni V. , Nikolopoulos E. I. , Meskele T. , Hossain F. , and Papadopoulos A. , 2010: Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48, 16671683, doi:10.1109/TGRS.2009.2034736.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., Hsu K.-L. , Sorooshian S. , Braithwaite D. K. , Knapp K. R. , Cecil L. D. , Nelson B. R. , and Prat O. P. , 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, doi:10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Chidzambwa S. , Ceccato P. , Connor S. J. , and Ropelewski C. F. , 2008: Validation of high‐resolution satellite rainfall products over complex terrain. Int. J. Remote Sens., 29, 40974110, doi:10.1080/01431160701772526.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Ruiz F. , Connor S. J. , and Ceccato P. , 2010: Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteor. Climatol., 49, 10041014, doi:10.1175/2009JAMC2260.1.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Alessandrini S. , Evangelisti M. , and Rojas O. , 2015: A description and evaluation of FAO satellite rainfall estimation algorithm. Atmos. Res., 163, 4860, doi:10.1016/j.atmosres.2015.01.020.

    • Search Google Scholar
    • Export Citation
  • Feidas, H., 2010: Validation of satellite rainfall products over Greece. Theor. Appl. Climatol., 99, 193216, doi:10.1007/s00704-009-0135-8.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Huffman G. J. , 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9, 563575, doi:10.1175/2007JHM925.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , Braithwaite D. , Hsu K. , Joyce R. , Kidd C. , Nelkin E. J. , and Xie P. , 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.]

  • Joyce, R. J., and Xie P. , 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, doi:10.1175/JHM-D-11-022.1.

  • Korecha, D., and Sorteberg A. , 2013: Validation of operational seasonal rainfall forecast in Ethiopia. Water Resour. Res., 49, 76817697, doi:10.1002/2013WR013760.

    • Search Google Scholar
    • Export Citation
  • Mei, Y., Anagnostou E. N. , Nikolopoulos E. I. , and Borga M. , 2014: Error analysis of satellite precipitation products in mountainous basins. J. Hydrometeor., 15, 17781793, doi:10.1175/JHM-D-13-0194.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2000: The nature of rainfall variability over Africa on time scales of decades to millenia. Global Planet. Change, 26, 137158, doi:10.1016/S0921-8181(00)00040-0.

    • Search Google Scholar
    • Export Citation
  • Porcù, F., Milani L. , and Petracca M. , 2014: On the uncertainties in validating satellite instantaneous rainfall estimates with raingauge operational network. Atmos. Res., 144, 7381, doi:10.1016/j.atmosres.2013.12.007.

    • Search Google Scholar
    • Export Citation
  • Romilly, T. G., and Gebremichael M. , 2011: Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci., 15, 15051514, doi:10.5194/hess-15-1505-2011.

    • Search Google Scholar
    • Export Citation
  • Segele, Z. T., Lamb P. J. , and Leslie L. M. , 2009: Large-scale atmospheric circulation and global sea surface temperature associations with Horn of Africa June–September rainfall. Int. J. Climatol., 29, 10751100, doi:10.1002/joc.1751.

    • Search Google Scholar
    • Export Citation
  • Serrat-Capdevila, A., Valdes J. B. , and Stakhiv E. Z. , 2014: Water management applications for satellite precipitation products: Synthesis and recommendations. J. Amer. Water Resour. Assoc., 50, 509525, doi:10.1111/jawr.12140.

    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., Anagnostou E. N. , and Nikolopoulos E. I. , 2013: Assessment of high-resolution satellite-based rainfall estimates over the Mediterranean during heavy precipitation events. J. Hydrometeor., 14, 15001514, doi:10.1175/JHM-D-12-0167.1.

    • Search Google Scholar
    • Export Citation
  • Tang, G., Zeng Z. , Long D. , Guo X. , Yong B. , Zhang W. , and Hong Y. , 2016: Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is Day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeor., 17, 121137, doi:10.1175/JHM-D-15-0059.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Peters-Lidard C. D. , 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Arkin P. , Sapiano M. R. P. , and Ebert E. E. , 2008: Evaluating high-resolution precipitation products. Bull. Amer. Meteor. Soc., 89, 19111916, doi:10.1175/2008BAMS2652.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide to meteorological instruments and methods of observation. 7th ed. WMO 8, 716 pp. [Available online at http://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf.]

  • Xie, P., and Arkin P. A. , 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34, 11431160, doi:10.1175/1520-0450(1995)034<1143:AIOGOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., Nijssen B. , Huffman G. J. , and Lettenmaier D. P. , 2014: Evaluation of real-time satellite precipitation data for global drought monitoring. J. Hydrometeor., 15, 16511660, doi:10.1175/JHM-D-13-0128.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 588 231 24
PDF Downloads 360 76 4