The Relationship between Soil Moisture and LAI in Different Types of Soil in Central Eastern China

Li Liu Chinese Academy of Meteorological Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Li Liu in
Current site
Google Scholar
PubMed
Close
,
Renhe Zhang Chinese Academy of Meteorological Sciences, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China

Search for other papers by Renhe Zhang in
Current site
Google Scholar
PubMed
Close
, and
Zhiyan Zuo Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Zhiyan Zuo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As important parameters in the land–atmosphere system, both soil moisture (SM) and vegetation play a significant role in land–atmosphere interactions. Using observational data from clay and sand stations over central eastern China, the relationship between leaf area index (LAI) and SM (LAI–SM) in different types of soil was investigated. The results show that the LAI–SM correlation is significantly positive in clay but not significant in sand. The physical causes for the discrepant LAI–SM correlations in different types of soil were explored from the perspectives of evapotranspiration (ET) and soil water retention. In clay stations, increasing LAI is associated with greater soil-water-retention capacity. Although the increasing LAI corresponds to increasing ET, the impact of ET on SM is weak because of the small particle size of soil. Consequently, the LAI–SM relationship in clay is significantly positive. In sand stations, ET is negatively correlated with SM owing to the large soil particle size, resulting in a negative LAI–SM correlation in sand. However, soil water retention is weakened by the increased LAI, which may be an important factor causing the insignificant LAI–SM correlation in sand.

Publisher’s Note: This article was revised on 15 May 2017 to include the first author’s secondary affiliation, which was missing when originally published.

Corresponding author address: Dr. Renhe Zhang, Chinese Academy of Meteorological Sciences, No. 46 Zhong-Guan-Cun South Ave., Haidian District, Beijing 100081, China. E-mail: renhe@camscma.cn

Abstract

As important parameters in the land–atmosphere system, both soil moisture (SM) and vegetation play a significant role in land–atmosphere interactions. Using observational data from clay and sand stations over central eastern China, the relationship between leaf area index (LAI) and SM (LAI–SM) in different types of soil was investigated. The results show that the LAI–SM correlation is significantly positive in clay but not significant in sand. The physical causes for the discrepant LAI–SM correlations in different types of soil were explored from the perspectives of evapotranspiration (ET) and soil water retention. In clay stations, increasing LAI is associated with greater soil-water-retention capacity. Although the increasing LAI corresponds to increasing ET, the impact of ET on SM is weak because of the small particle size of soil. Consequently, the LAI–SM relationship in clay is significantly positive. In sand stations, ET is negatively correlated with SM owing to the large soil particle size, resulting in a negative LAI–SM correlation in sand. However, soil water retention is weakened by the increased LAI, which may be an important factor causing the insignificant LAI–SM correlation in sand.

Publisher’s Note: This article was revised on 15 May 2017 to include the first author’s secondary affiliation, which was missing when originally published.

Corresponding author address: Dr. Renhe Zhang, Chinese Academy of Meteorological Sciences, No. 46 Zhong-Guan-Cun South Ave., Haidian District, Beijing 100081, China. E-mail: renhe@camscma.cn
Save
  • Allen, R. G., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Anderson, R. G., Wang D. , Tirado-Corbala R. , Zhang H. , and Ayars J. E. , 2015: Divergence of actual and reference evaporation observations for irrigated sugarcane with windy tropical conditions. Hydrol. Earth Syst. Sci., 19, 583599, doi:10.5194/hess-19-583-2015.

    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., Srinivasan R. , Muttiah R. S. , and Williams J. R. , 1998: Large area hydrologic modeling and assessment part I: Model development. J. Amer. Water Resour. Assoc., 34, 7389, doi:10.1111/j.1752-1688.1998.tb05961.x.

    • Search Google Scholar
    • Export Citation
  • Bobée, C., Ottlé C. , Maignan F. , De Noblet-Ducoudré N. , Maugis P. , Lézine A. M. , and Ndiaye M. , 2012: Analysis of vegetation seasonality in Sahelian environments using MODIS LAI, in association with land cover and rainfall. J. Arid Environ., 84, 3850, doi:10.1016/j.jaridenv.2012.03.005.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, 678 pp.

  • Bonan, G. B., Pollard D. , and Thompson S. L. , 1992: Effects of boreal forest vegetation on global climate. Nature, 359, 716718, doi:10.1038/359716a0.

    • Search Google Scholar
    • Export Citation
  • Bounoua, L., Collatz G. , Los S. , Sellers P. , Dazlich D. , Tucker C. , and Randall D. , 2000: Sensitivity of climate to changes in NDVI. J. Climate, 13, 22772292, doi:10.1175/1520-0442(2000)013<2277:SOCTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buermann, W., Dong J. , Zeng X. , Myneni R. B. , and Dickinson R. E. , 2001: Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations. J. Climate, 14, 35363550, doi:10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Ni D. , and Li Z. , 2006: Modeling of impacts of vegetation coverage change on land surface conditions. J. Nanjing Inst. Meteor., 29, 725734.

    • Search Google Scholar
    • Export Citation
  • CMA, 2003: Technical regulations on the production and filing of meteorological science data sets. China Meteorological Administration, 3 pp.

  • CMA, 2007: The standards of Chinese meteorology industry: The grade of wheat drought disaster. China Meteorological Administration, 11 pp.

  • Cristea, N. C., Kampf S. K. , and Burges S. J. , 2013: Revised coefficients for Priestley–Taylor and Makkink–Hansen equations for estimating daily reference evapotranspiration. J. Hydrol. Eng., 18, 12891300, doi:10.1061/(ASCE)HE.1943-5584.0000679.

    • Search Google Scholar
    • Export Citation
  • Dallmeyer, A., and Claussen M. , 2011: The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate. Biogeosciences, 8, 16931731, doi:10.5194/bgd-8-1693-2011.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Manabe S. , 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, doi:10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., Manabe S. , and Stouffer R. , 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011, doi:10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duchemin, B., and Coauthors, 2006: Monitoring wheat phenology and irrigation in central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manage., 79, 127, doi:10.1016/j.agwat.2005.02.013.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., Robock A. , Vinnikov K. Y. , Hollinger S. E. , Liu S. , and Namkhai A. , 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 86511 877, doi:10.1029/2000JD900051.

    • Search Google Scholar
    • Export Citation
  • FAO, 2003: Digital soil map of the world and derived soil properties. FAO Land and Water Digital Media Series 1, CD-ROM.

  • Fensholt, R., Sandholt I. , and Rasmussen M. S. , 2004: Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ., 91, 490507, doi:10.1016/j.rse.2004.04.009.

    • Search Google Scholar
    • Export Citation
  • Gao, F., and Coauthors, 2008: An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geosci. Remote Sens. Lett., 5, 6064, doi:10.1109/LGRS.2007.907971.

    • Search Google Scholar
    • Export Citation
  • Gong, X., Gao J. , Yin G. , Zhang Z. , and Liu Z. , 2008: Water conservation performance of four types of super absorbent polymer (in Chinese). Chin. J. Ecology, 4, 652656.

    • Search Google Scholar
    • Export Citation
  • Guillevic, P., Koster R. D. , Suarez M. J. , Bounoua L. , Collatz G. J. , Los S. O. , and Mahanama S. P. P. , 2002: Influence of the interannual variability of vegetation on the surface energy balance—A global sensitivity study. J. Hydrometeor., 3, 617629, doi:10.1175/1525-7541(2002)003<0617:IOTIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, W., Ma Z. , and Yao Y. , 2003: Regional characteristics of soil moisture evolution in northern China over recent 50 years (in Chinese). Acta. Geogr. Sin., 58, 8390.

    • Search Google Scholar
    • Export Citation
  • Jeong, S., Ho C. , Park T. , Kim J. , and Levis S. , 2011: Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO2 climate. Climate Dyn., 37, 821833, doi:10.1007/s00382-010-0827-x.

    • Search Google Scholar
    • Export Citation
  • Ji, B., Zhao Y. , Mu X. , Liu K. , and Li C. , 2013: Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. Plant Soil Environ., 59, 295302.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R., Zhou L. , Myneni R. , Tucker C. , Slayback D. , Shabanov N. , and Pinzon J. , 2003: The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett., 30, 2147, doi:10.1029/2003GL018251.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., and Wang G. , 2007: Impact of vegetation feedback on the response of precipitation to antecedent soil moisture anomalies over North America. J. Hydrometeor., 8, 534550, doi:10.1175/JHM612.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and He Y. , 2012: Comparative analysis between automatic and artificial soil moisture observations (in Chinese). China Agric. Inf., 2, 153155.

    • Search Google Scholar
    • Export Citation
  • Liu, L., Zhang R. , and Zuo Z. , 2014: Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China. J. Geophys. Res. Atmos., 119, 5464, doi:10.1002/2013JD020940.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Notaro M. , Kutzbach J. , and Liu N. , 2006: Assessing global vegetation–climate feedbacks from observations. J. Climate, 19, 787814, doi:10.1175/JCLI3658.1.

    • Search Google Scholar
    • Export Citation
  • Lo, M. H., and Famiglietti J. S. , 2010: Effect of water table dynamics on land surface hydrologic memory. J. Geophys. Res., 115, D22118, doi:10.1029/2010JD014191.

    • Search Google Scholar
    • Export Citation
  • Ma, X., Cheng Z. , Ma L. , and Liu L. , 2015: Comparative analysis between automatic and artificial soil moisture observations in agricultural meteorology (in Chinese). Agric. Technol., 21, 132133.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., Wei H. , and Fu C. , 2000: Relationship between regional soil moisture variation and climatic variability over East China (in Chinese). Acta. Meteor. Sin., 3, 278287.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., Fu C. , Xie L. , Chen W. , and Tao S. , 2001: Some problems in the study on the relationship between soil moisture and climatic change (in Chinese). Adv. Earth Sci., 16, 563567.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994: Influence of the land surface in the Asian summer monsoon: External conditions versus internal feedbacks. J. Climate, 7, 10331049, doi:10.1175/1520-0442(1994)007<1033:IOTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meng, L., Long D. , Quiring S. M. , and Shen Y. , 2014: Statistical analysis of the relationship between spring soil moisture and summer precipitation in east China. Int. J. Climatol., 34, 15111523, doi:10.1002/joc.3780.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Liu Z. , and Williams J. W. , 2006: Observed vegetation–climate feedbacks in the United States. J. Climate, 19, 763786, doi:10.1175/JCLI3657.1.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Avissar R. , Raupach M. , Dolman A. J. , Zeng X. , and Denning A. S. , 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biol., 4, 461475, doi:10.1046/j.1365-2486.1998.t01-1-00176.x.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., 1996: Examining the spring discontinuity in daily temperature ranges. J. Climate, 9, 803808, doi:10.1175/1520-0442(1996)009<0803:ETSDID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour. Res., 48, W06526, doi:10.1029/2011WR011749.

    • Search Google Scholar
    • Export Citation
  • Shangguan, W., Dai Y. , Liu B. , Ye A. , and Yuan H. , 2012: A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma, 171–172, 8591, doi:10.1016/j.geoderma.2011.01.013.

    • Search Google Scholar
    • Export Citation
  • Strengers, B. J., and Coauthors, 2010: Assessing 20th century climate–vegetation feedbacks of land‐use change and natural vegetation dynamics in a fully coupled vegetation–climate model. Int. J. Climatol., 30, 20552065, doi:10.1002/joc.2132.

    • Search Google Scholar
    • Export Citation
  • Sun, C., Li W. , Zhang Z. , and He J. , 2005: Distribution and variation features of soil humidity anomaly in Huaihe River basin and its relationship with climatic anomaly (in Chinese). J. Appl. Meteor. Sci., 16, 129138.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., and Yeserkepova I. , 1991: Soil moisture: Empirical data and model results. J. Climate, 4, 6679, doi:10.1175/1520-0442(1991)004<0066:SMEDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, W., Anderson B. T. , Entekhabi D. , Huang D. , Kaufmann R. K. , Potter C. , and Myneni R. B. , 2006: Feedbacks of vegetation on summertime climate variability over the North American grasslands. Part II: A coupled stochastic model. Earth Interact., 10, doi:10.1175/EI197.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Xie H. , Guan H. , and Zhou X. , 2007: Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. J. Hydrol., 340, 1224, doi:10.1016/j.jhydrol.2007.03.022.

    • Search Google Scholar
    • Export Citation
  • Wei, Z., Paredes P. , Liu Y. , Chi W. W. , and Pereira L. S. , 2015: Modelling transpiration, soil evaporation and yield prediction of soybean in north China plain. Agric. Water Manage., 147, 4353, doi:10.1016/j.agwat.2014.05.004.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and Dickinson R. E. , 2004: Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Climate, 17, 27522764, doi:10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, W., Geller M. A. , and Dickinson R. E. , 2002: The response of soil moisture to long-term variability of precipitation. J. Hydrometeor., 3, 604613, doi:10.1175/1525-7541(2002)003<0604:TROSMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xia, J., Gu Z. , Zhou F. , Liu J. , and Peng S. , 2012: Soil particle fractal dimension and soil moisture physical properties in different forest stands in hilly red soil region. Sci. Soil Water Conserv., 5, 915.

    • Search Google Scholar
    • Export Citation
  • Xing, W., Wang W. , Shao Q. , Peng S. , Yu Z. , Yong B. , and Taylor J. , 2014: Changes of reference evapotranspiration in the Haihe River basin: Present observations and future projection from climatic variables through multi-model ensemble. Global Planet. Change, 115, 115, doi:10.1016/j.gloplacha.2014.01.004.

    • Search Google Scholar
    • Export Citation
  • Yang, P., Shibasaki R. , Wu W. , Zhou Q. , Chen Z. , Zha Y. , Shi Y. , and Tang H. , 2007: Evaluation of MODIS land cover and LAI products in cropland of north China plain using in situ measurements and Landsat TM images. IEEE Trans. Geosci. Remote Sens., 45, 30873097, doi:10.1109/TGRS.2007.902426.

    • Search Google Scholar
    • Export Citation
  • Yang, W., Huang D. , Tan B. , Stroeve J. C. , Shabanov N. V. , Knyazikhin Y. , Nemani R. R. , and Myneni R. B. , 2006: Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the Terra MODIS sensor: 2000–2005. IEEE Trans. Geosci. Remote Sens., 44, 18291842, doi:10.1109/TGRS.2006.871214.

    • Search Google Scholar
    • Export Citation
  • Zhan, Y., and Lin Z. , 2011: The relationship between June precipitation over mid-lower reaches of the Yangtze River basin and spring soil moisture over the East Asian monsoon region. Acta Meteor. Sin., 25, 355363, doi:10.1007/s13351-011-0310-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Zuo Z. , 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in east China. J. Climate, 24, 33093322, doi:10.1175/2011JCLI4084.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Pei D. , and Chen S. , 2004: Root growth and soil water utilization of winter wheat in the north China plain. Hydrol. Processes, 18, 22752287, doi:10.1002/hyp.5533.

    • Search Google Scholar
    • Export Citation
  • Zhao, S., Zhao Y. , and Wu J. , 2010: Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau. Sci. China Earth Sci., 53, 617625, doi:10.1007/s11430-010-0029-8.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., and Zhang R. , 2007: The spring soil moisture and the summer rainfall in eastern China. Chin. Sci. Bull., 52, 33103312, doi:10.1007/s11434-007-0442-3.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., and Zhang R. , 2009: Temporal and spatial features of the soil moisture in boreal spring in eastern China. Sci. China Ser. D, 52, 269278, doi:10.1007/s11430-009-0011-5.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., and Zhang R. , 2016: Influence of soil moisture in eastern China on East Asian summer monsoon. Adv. Atmos. Sci., 33, 151163, doi:10.1007/s00376-015-5024-8.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., Zhang R. , and Zhao P. , 2011: The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer. Climate Dyn., 36, 12071219, doi:10.1007/s00382-010-0863-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 864 275 21
PDF Downloads 673 180 14