Future Changes in Mean and Extreme Monsoon Precipitation in the Middle and Lower Yangtze River Basin, China, in the CMIP5 Models

Yanjuan Wu Department of Geography, Shanghai Normal University, Shanghai, China
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China

Search for other papers by Yanjuan Wu in
Current site
Google Scholar
PubMed
Close
,
Shuang-Ye Wu Geology Department, University of Dayton, Dayton, Ohio
School of Geographic and Oceanic Sciences, Nanjing University, Nanjing, China

Search for other papers by Shuang-Ye Wu in
Current site
Google Scholar
PubMed
Close
,
Jiahong Wen Department of Geography, Shanghai Normal University, Shanghai, China

Search for other papers by Jiahong Wen in
Current site
Google Scholar
PubMed
Close
,
Felipe Tagle School of Operations Research and Information Engineering, Cornell University, Ithaca, New York

Search for other papers by Felipe Tagle in
Current site
Google Scholar
PubMed
Close
,
Ming Xu Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

Search for other papers by Ming Xu in
Current site
Google Scholar
PubMed
Close
, and
Jianguo Tan Shanghai Institute of Meteorological Science, Shanghai, China

Search for other papers by Jianguo Tan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the potential future changes of mean and extreme precipitation in the middle and lower Yangtze River basin (MLYRB), eastern China, are assessed using the models of phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical model simulations are first compared with observations in order to evaluate model performance. In general, the models simulate the precipitation mean and frequency better than the precipitation intensity and extremes, but still have difficulty capturing precipitation patterns over complex terrains. They tend to overestimate precipitation mean, frequency, and intensity while underestimating the extremes. After correcting for model biases, the spatial variation of mean precipitation projected by the multimodel ensemble mean (MME) is improved, so the MME after the bias correction is used to project changes for the years 2021–50 and 2071–2100 relative to 1971–2000 under two emission scenarios: RCP4.5 and RCP8.5. Results show that with global warming, precipitation will become less frequent but more intense over the MLYRB. Relative changes in extremes generally exceed those in mean precipitation. Moreover, increased precipitation extremes are also expected even in places where mean precipitation is projected to decrease in 2021–50. The overall increase in extreme precipitation could potentially lead to more frequent floods in this already flood-prone region.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0033.s1.

Corresponding author address: Shuang-Ye Wu, Geology Department, University of Dayton, 300 College Park, Dayton, OH 45469-2364. E-mail: swu001@udayton.edu; jhwen@shnu.edu.cn

Abstract

In this study, the potential future changes of mean and extreme precipitation in the middle and lower Yangtze River basin (MLYRB), eastern China, are assessed using the models of phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical model simulations are first compared with observations in order to evaluate model performance. In general, the models simulate the precipitation mean and frequency better than the precipitation intensity and extremes, but still have difficulty capturing precipitation patterns over complex terrains. They tend to overestimate precipitation mean, frequency, and intensity while underestimating the extremes. After correcting for model biases, the spatial variation of mean precipitation projected by the multimodel ensemble mean (MME) is improved, so the MME after the bias correction is used to project changes for the years 2021–50 and 2071–2100 relative to 1971–2000 under two emission scenarios: RCP4.5 and RCP8.5. Results show that with global warming, precipitation will become less frequent but more intense over the MLYRB. Relative changes in extremes generally exceed those in mean precipitation. Moreover, increased precipitation extremes are also expected even in places where mean precipitation is projected to decrease in 2021–50. The overall increase in extreme precipitation could potentially lead to more frequent floods in this already flood-prone region.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0033.s1.

Corresponding author address: Shuang-Ye Wu, Geology Department, University of Dayton, 300 College Park, Dayton, OH 45469-2364. E-mail: swu001@udayton.edu; jhwen@shnu.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 1.68 MB)
Save
  • Chan, J. C., and Zhou W. , 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, doi:10.1029/2004GL022015.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and Sun J. , 2013: Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteor. Atmos. Phys., 121, 5577, doi:10.1007/s00703-013-0257-5.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and Sun J. , 2015: Changes in climate extreme events in China associated with warming. Int. J. Climatol., 35, 27352751, doi:10.1002/joc.4168.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Zhou T. , Neale R. B. , Wu X. , and Zhang G. J. , 2010: Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23, 36573675, doi:10.1175/2010JCLI3022.1.

    • Search Google Scholar
    • Export Citation
  • Chen, L., and Frauenfeld O. W. , 2014: A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos., 119, 57675786, doi:10.1002/2013JD021190.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 208 pp.

  • Cooley, D., and Sain S. R. , 2010: Spatial hierarchical modeling of precipitation extremes from a regional climate model. J. Agric. Biol. Environ. Stat., 15, 381402, doi:10.1007/s13253-010-0023-9.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and Brown S. , 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Feng, L., Zhou T. , Wu B. , Li T. , and Luo J.-J. , 2011: Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv. Atmos. Sci., 28, 464476, doi:10.1007/s00376-010-0016-1.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., Bremnes J. B. , Haugen J. E. , and Engen-Skaugen T. , 2012: Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, doi:10.5194/hess-16-3383-2012.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G., and Coauthors, 2010: Good practice guidance paper on detection and attribution related to anthropogenic climate change. Meeting report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change, T. F. Stocker et al., Eds., IPCC Working Group I Technical Support Unit, University of Bern, 8 pp. [Available online at http://www.ipcc-wg2.gov/meetings/EMs/IPCC_D%26A_GoodPracticeGuidancePaper.pdf.]

  • Hsu, P. C., Li T. , Luo J. J. , Murakami H. , Kitoh A. , and Zhao M. , 2012: Increase of global monsoon area and precipitation under global warming: A robust signal? Geophys. Res. Lett., 39, L06701, doi:10.1029/2012GL051037.

    • Search Google Scholar
    • Export Citation
  • Hu, Z. Z., Latif M. , Roeckner E. , and Bengtssn L. , 2000: Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys. Res. Lett., 27, 26812684, doi:10.1029/2000GL011550.

    • Search Google Scholar
    • Export Citation
  • Huang, D. Q., Zhu J. , Zhang Y. C. , and Huang A. N. , 2013: Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models. J. Geophys. Res. Atmos., 118, 90359047, doi:10.1002/jgrd.50695.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., 1998a: Interpolation of rainfall data with thin plate smoothing splines—Part I: Two dimensional smoothing of data with short range correlation. J. Geogr. Inf. Decis. Anal., 2, 139151.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., 1998b: Interpolation of rainfall data with thin plate smoothing splines—Part II: Analysis of topographic dependence. J. Geogr. Inf. Decis. Anal., 2, 152167.

    • Search Google Scholar
    • Export Citation
  • Jiang, D., and Tian Z. , 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull., 58, 14271435, doi:10.1007/s11434-012-5533-0.

    • Search Google Scholar
    • Export Citation
  • Jiang, T., and Shi Y. , 2003: Global climatic warming, the Yangtze floods and potential loss. Adv. Earth Sci., 18, 277284.

  • Jiang, T., Kundzewicz Z. W. , and Su B. , 2008: Changes in monthly precipitation and flood hazard in the Yangtze River basin, China. Int. J. Climatol., 28, 14711482, doi:10.1002/joc.1635.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., Zwiers F. , Zhang X. , and Wehner M. , 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, doi:10.1007/s10584-013-0705-8.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and Sedláček J. , 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., Furrer R. , Tebaldi C. , Cermak J. , and Meehl G. A. , 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758, doi:10.1175/2009JCLI3361.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., and Wang B. , 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, doi:10.1007/s00382-012-1564-0.

    • Search Google Scholar
    • Export Citation
  • Li, J., and Zeng Q. , 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1274, doi:10.1029/2001GL013874.

  • Pickands, J., III, 1975: Statistical inference using extreme order statistics. Ann. Stat., 119131.

  • Pincus, R., Batstone C. P. , Hofmann R. J. P. , Taylor K. E. , and Glecker P. J. , 2008: Evaluating the present‐day simulation of clouds, precipitation, and radiation in climate models. J. Geophys. Res., 113, D14209, doi:10.1029/2007JD009334.

    • Search Google Scholar
    • Export Citation
  • Qing, B., 2012: Projected changes in Asian summer monsoon in RCP scenarios of CMIP5. Atmos. Oceanic Sci. Lett., 5, 4348, doi:10.1080/16742834.2012.11446959.

    • Search Google Scholar
    • Export Citation
  • Shi, L., Ding Y. , and He Y. , 2012: Estimation for geographic and orographic influence on the area rainfall distribution in Yangtze River basin. 2012 IEEE Fifth Int. Conf. on Advanced Computational Intelligence, Nanjing, China, IEEE, 772–775, doi:10.1109/ICACI.2012.6463272.

  • Sillmann, J., Kharin V. , Zhang X. , Zwiers F. , and Bronaugh D. , 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, doi:10.1002/jgrd.50203.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., Kharin V. , Zwiers F. , Zhang X. , and Bronaugh D. , 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Search Google Scholar
    • Export Citation
  • Song, F., and Zhou T. , 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, doi:10.1175/JCLI-D-13-00248.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Su, B., Jiang T. , Ren G. , and Chen Z. , 2006: Observed trends of precipitation extreme in the Yangzi River basin during 1960–2004 (in Chinese with English abstract). Adv. Climate Change Res., 2, 914.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, doi:10.1029/2000JD900719.

  • Tian, D., Guo Y. , and Dong W. , 2015: Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Adv. Atmos. Sci., 32, 487496, doi:10.1007/s00376-014-4102-7.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., and Jacob D. , 2009: Spatial analysis of trends in extreme precipitation events in high‐resolution climate model results and observations for Germany. J. Geophys. Res., 114, D12113, doi:10.1029/2008JD010652.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Wu Z. , Li J. , Liu J. , Chang C.-P. , Ding Y. , and Wu G. , 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 44494463, doi:10.1175/2008JCLI2183.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., 2001: Progress in Modern Meteorology (in Chinese). Meteorological Press, 458 pp.

  • Wang, Y., and Yan Z. , 2009: Trends in seasonal precipitation over China during 1961–2007. Atmos. Oceanic Sci. Lett., 2, 165171, doi:10.1080/16742834.2009.11446798.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., Smith R. L. , Bala G. , and Duffy P. , 2010: The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Climate Dyn., 34, 241247, doi:10.1007/s00382-009-0656-y.

    • Search Google Scholar
    • Export Citation
  • Wu, J., Jiang W. , Fu C. , Su B. , Liu H. , and Tang J. , 2004: Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China. Adv. Atmos. Sci., 21, 637649, doi:10.1007/BF02915731.

    • Search Google Scholar
    • Export Citation
  • Wu, S.-Y., 2012: Projecting changes in extreme precipitation in the midwestern United States using North American Regional Climate Change Assessment Program (NARCCAP) regional climate models. Greenhouse Gases: Emission, Measurement and Management, G. Liu, Ed., InTech, 337–354, doi:10.5772/32667.

  • Wu, Y. J., Wu S.-Y. , Wen J. H. , Xu M. , and Tan J. G. , 2016: Changing characteristics of precipitation in China during 1960–2012. Int. J. Climatol., 36, 13871402, doi:10.1002/joc.4432.

    • Search Google Scholar
    • Export Citation
  • Wuebbles, D., and Coauthors, 2014: CMIP5 climate model analyses: Climate extremes in the United States. Bull. Amer. Meteor. Soc., 95, 571583, doi:10.1175/BAMS-D-12-00172.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and Xu C. , 2012: Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models. Atmos. Oceanic Sci. Lett., 5, 489494.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., Wu J. , Shi Y. , Zhou B. , Li R. , and Wu J. , 2015: Change in extreme climate events over China based on CMIP5. Atmos. Oceanic Sci. Lett., 8, 102.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., Zhang X. , Wan H. , and Pan X. , 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, doi:10.1175/JCLI-3318.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y. F., 2012: Assessment report for the 0.5° × 0.5° gridded daily precipitation for China (version 2.0) (in Chinese). National Meteorological Center Rep.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 335 123 10
PDF Downloads 293 78 2