Effects of Atmospheric Surface Layer Stability on Turbulent Fluxes of Heat and Water Vapor across the Water–Atmosphere Interface

Yusri Yusup Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia

Search for other papers by Yusri Yusup in
Current site
Google Scholar
PubMed
Close
and
Heping Liu Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington

Search for other papers by Heping Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Widely used numerical models to estimate turbulent exchange of latent heat flux (LE) and sensible heat flux H across the water–atmosphere interface are based on the bulk transfer relations linked indirectly to atmospheric stability, even though the accurate prediction of the influence of stability on fluxes is uncertain. Here eddy covariance data collected over the water surface of Ross Barnett Reservoir, Mississippi, was analyzed to study how atmospheric stability and other variables (wind speed, vapor pressure gradient, and temperature gradient) in the atmospheric surface layer (ASL) modulated LE and H variations in different stability ranges. LE and H showed right-skewed, bell-shaped distributions as the ASL stability shifted from very unstable to near neutral and then stable conditions. The results demonstrate that the maximum (minimum) LE and H did not necessarily occur under the most unstable (stable) conditions, but rather in the intermediate stability ranges. No individual variables were able to explain the dependence of LE and H variations on stability. The coupling effects of stability, wind speed, and vapor pressure gradient (temperature gradient) on LE (H) primarily caused the observed variations in LE and H in different stability ranges. These results have important implications for improving parameterization schemes to estimate fluxes over water surfaces in numerical models.

Corresponding author address: Heping Liu, Dept. of Civil and Environmental Engineering, Washington State University, 405 Spokane St., Pullman, WA 99164. E-mail: heping.liu@wsu.edu

Abstract

Widely used numerical models to estimate turbulent exchange of latent heat flux (LE) and sensible heat flux H across the water–atmosphere interface are based on the bulk transfer relations linked indirectly to atmospheric stability, even though the accurate prediction of the influence of stability on fluxes is uncertain. Here eddy covariance data collected over the water surface of Ross Barnett Reservoir, Mississippi, was analyzed to study how atmospheric stability and other variables (wind speed, vapor pressure gradient, and temperature gradient) in the atmospheric surface layer (ASL) modulated LE and H variations in different stability ranges. LE and H showed right-skewed, bell-shaped distributions as the ASL stability shifted from very unstable to near neutral and then stable conditions. The results demonstrate that the maximum (minimum) LE and H did not necessarily occur under the most unstable (stable) conditions, but rather in the intermediate stability ranges. No individual variables were able to explain the dependence of LE and H variations on stability. The coupling effects of stability, wind speed, and vapor pressure gradient (temperature gradient) on LE (H) primarily caused the observed variations in LE and H in different stability ranges. These results have important implications for improving parameterization schemes to estimate fluxes over water surfaces in numerical models.

Corresponding author address: Heping Liu, Dept. of Civil and Environmental Engineering, Washington State University, 405 Spokane St., Pullman, WA 99164. E-mail: heping.liu@wsu.edu
Save
  • Assouline, S., Tyler S. W. , Tanny J. , Cohen S. , Bou-Zeid E. , Parlange M. B. , and Katul G. G. , 2008: Evaporation from three water bodies of different sizes and climates: Measurements and scaling analysis. Adv. Water Resour., 31, 160172, doi:10.1016/j.advwatres.2007.07.003.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., Vesala T. , and Papale D. , 2012: Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer, 438 pp.

  • Bastviken, D., Tranvik L. J. , Downing J. A. , Crill P. M. , and Enrich-Prast A. , 2011: Freshwater methane emissions offset the continental carbon sink. Science, 331, 5050, doi:10.1126/science.1196808.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., Rouse W. R. , and Schertzer W. M. , 2003: Enhancement of evaporation from a large northern lake by the entrainment of warm, dry air. J. Hydrometeor., 4, 680693, doi:10.1175/1525-7541(2003)004<0680:EOEFAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bouin, M.-N., Caniaux G. , Traullé O. , Legain D. , and Le Moigne P. , 2012: Long-term heat exchanges over a Mediterranean lagoon. J. Geophys. Res., 117, D23104, doi:10.1029/2012JD017857.

    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20, 15271532, doi:10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., Fairall C. W. , and Curry J. A. , 1996: Evaluation of turbulent fluxes at the ocean surface using surface renewal theory. J. Geophys. Res., 101, 28 50328 513, doi:10.1029/96JC02023.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Hare J. E. , Grachev A. A. , and Edson J. B. , 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, doi:10.1007/s10546-006-9048-6.

    • Search Google Scholar
    • Export Citation
  • Foken, T., Göockede M. , Mauder M. , Mahrt L. , Amiro B. , and Munger W. , 2004: Post-field data quality control. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, X. Lee, W. Massman, and B. Law, Eds., Springer, 181–208.

  • Granger, R. J., and Hedstrom N. , 2011: Modelling hourly rates of evaporation from small lakes. Hydrol. Earth Syst. Sci., 15, 267277, doi:10.5194/hess-15-267-2011.

    • Search Google Scholar
    • Export Citation
  • Guo, X., Liu H. , and Yang K. , 2015: On the application of the Priestley–Taylor relation on sub-daily time scales. Bound.-Layer Meteor., 156, 489499, doi:10.1007/s10546-015-0031-y.

    • Search Google Scholar
    • Export Citation
  • Ikebuchi, S., Jinnouchi T. , Okahisa H. , and Ohuto A. , 1988: Observation and estimation on evaporation from Lake Biwa and its utilization to simulation model. Proc. Jpn. Conf. Hydraul., 32, 155160, doi:10.2208/prohe1975.32.155.

  • Kljun, N., Calanca P. , Rotach M. W. , and Schmid H. P. , 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503523, doi:10.1023/B:BOUN.0000030653.71031.96.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., Kratz T. K. , and Bowser C. J. , 2005: Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol., 308, 168195, doi:10.1016/j.jhydrol.2004.10.028.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Lyu S. , Ao Y. , Wen L. , Zhao L. , and Wang S. , 2015: Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmos. Res., 155, 1325, doi:10.1016/j.atmosres.2014.11.019.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Lyu S. , Zhao L. , Wen L. J. , Ao Y. H. , and Wang S. Y. , 2016: Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau. Theor. Appl. Climatol., 124, 723735, doi:10.1007/s00704-015-1440-z.

    • Search Google Scholar
    • Export Citation
  • Liu, H., Zhang Y. , Liu S. , Jiang H. , Sheng L. , and Williams Q. L. , 2009: Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. J. Geophys. Res., 114, D04110, doi:10.1029/2008JD010891.

    • Search Google Scholar
    • Export Citation
  • Liu, H., Zhang Q. , and Dowler G. , 2012: Environmental controls on the surface energy budget over a large southern inland water in the United States: An analysis of one-year eddy covariance flux data. J. Hydrometeor., 13, 18931910, doi:10.1175/JHM-D-12-020.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., Katsaros K. B. , and Businger J. A. , 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and Coauthors, 2007: The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Bound.-Layer Meteor., 123, 2954, doi:10.1007/s10546-006-9139-4.

    • Search Google Scholar
    • Export Citation
  • McGloin, R., McGowan H. , McJannet D. , and Burn S. , 2014a: Modelling sub-daily latent heat fluxes from a small reservoir. J. Hydrol., 519B, 23012311, doi:10.1016/j.jhydrol.2014.10.032.

    • Search Google Scholar
    • Export Citation
  • McGloin, R., McGowan H. , McJannet D. , Cook F. , Sogachev A. , and Burn S. , 2014b: Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance. Water Resour. Res., 50, 494513, doi:10.1002/2013WR013899.

    • Search Google Scholar
    • Export Citation
  • Nordbo, A., Launiainen S. , Mammarella I. , Leppäranta M. , Huotari J. , Ojala A. , and Vesala T. , 2011: Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J. Geophys. Res., 116, D02119, doi:10.1029/2010JD014542.

    • Search Google Scholar
    • Export Citation
  • Oswald, C. J., and Rouse W. R. , 2004: Thermal characteristics and energy balance of various-size Canadian Shield lakes in the Mackenzie River basin. J. Hydrometeor., 5, 129144, doi:10.1175/1525-7541(2004)005<0129:TCAEBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, P. A., and Coauthors, 2013: Global carbon dioxide emissions from inland waters. Nature, 503, 355359, doi:10.1038/nature12760.

    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., Oswald C. , Binyamin J. , Blanken P. D. , Schertzer W. M. , and Spence C. , 2003: Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. J. Hydrometeor., 4, 720730, doi:10.1175/1525-7541(2003)004<0720:IASVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., Oswald C. , Binyamin J. , Spence C. , Schertzer W. M. , Blanken P. D. , Bussières N. , and Duguay C. R. , 2005: The role of northern lakes in a regional energy balance. J. Hydrometeor., 6, 291305, doi:10.1175/JHM421.1.

    • Search Google Scholar
    • Export Citation
  • Schotanus, P., Nieuwstadt F. T. M. , and Bruin H. A. R. , 1983: Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteor., 26, 8193, doi:10.1007/BF00164332.

    • Search Google Scholar
    • Export Citation
  • Sene, K. J., Gash J. H. C. , and McNeil D. D. , 1991: Evaporation from a tropical lake: Comparison of theory with direct measurements. J. Hydrol., 127, 193217, doi:10.1016/0022-1694(91)90115-X.

    • Search Google Scholar
    • Export Citation
  • Spence, C., Blanken P. D. , Lenters J. D. , and Hedstrom N. , 2013: The importance of spring and autumn atmospheric conditions for the evaporation regime of Lake Superior. J. Hydrometeor., 14, 16471658, doi:10.1175/JHM-D-12-0170.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tanny, J., Cohen S. , Assouline S. , Lange F. , Grava A. , Berger D. , Teltch B. , and Parlange M. B. , 2008: Evaporation from a small water reservoir: Direct measurements and estimates. J. Hydrol., 351, 218229, doi:10.1016/j.jhydrol.2007.12.012.

    • Search Google Scholar
    • Export Citation
  • Tsukamoto, O., Ohtaki E. , Iwatani Y. , and Mitsuta Y. , 1991: Stability dependence of the drag and bulk transfer-coefficients over a coastal sea-surface. Bound.-Layer Meteor., 57, 359375, doi:10.1007/BF00120054.

    • Search Google Scholar
    • Export Citation
  • Verburg, P., and Antenucci J. P. , 2010: Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. J. Geophys. Res., 115, D11109, doi:10.1029/2009JD012839; Corrigendum, 118, 5347, doi:10.1002/jgrd.50464.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Ma Y. , Chen X. , Ma W. , Su Z. , and Menenti M. , 2015: Observation and simulation of lake–air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau. J. Geophys. Res. Atmos., 120, 12 32712 344, doi:10.1002/2015JD023863.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., Pearman G. I. , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, doi:10.1002/qj.49710644707.

    • Search Google Scholar
    • Export Citation
  • Xiao, W., Liu S. , Wang W. , Yang D. , Xu J. , Cao C. , Li H. , and Lee X. , 2013: Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake. Bound.-Layer Meteor., 148, 479494, doi:10.1007/s10546-013-9827-9.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and Liu H. , 2013: Interannual variability in the surface energy budget and evaporation over a large southern inland water in the United States. J. Geophys. Res. Atmos., 118, 42904302, doi:10.1002/jgrd.50435.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and Liu H. , 2014: Seasonal changes in physical processes controlling evaporation over inland water. J. Geophys. Res. Atmos., 119, 97799792, doi:10.1002/2014JD021797.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., Gao Z. , Li D. , Bi X. , Liu C. , and Liao F. , 2013: Scalar flux–gradient relationships under unstable conditions over water in coastal regions. Bound.-Layer Meteor., 148, 495516, doi:10.1007/s10546-013-9829-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 474 143 0
PDF Downloads 309 64 0