Effects of a Groundwater Scheme on the Simulation of Soil Moisture and Evapotranspiration over Southern South America

J. Alejandro Martinez Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by J. Alejandro Martinez in
Current site
Google Scholar
PubMed
Close
,
Francina Dominguez Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Francina Dominguez in
Current site
Google Scholar
PubMed
Close
, and
Gonzalo Miguez-Macho Faculty of Physics, Universidad de Santiago de Compostela, Galicia, Spain

Search for other papers by Gonzalo Miguez-Macho in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of groundwater dynamics on the representation of water storage and evapotranspiration (ET) over southern South America are studied from simulations with the Noah-MP land surface model. The model is run with three different configurations: one including the Miguez-Macho and Fan groundwater scheme, another with the Simple Groundwater Model (SIMGM), and the other with free drainage at the bottom of the soil column. The first objective is to assess the effects of the groundwater schemes using a grid size typical of regional climate model simulations at the continental scale (20 km). The phase and amplitude of the fluctuations in the terrestrial water storage over the southern Amazon are improved with one of the groundwater schemes. An increase in the moisture in the top 2 m of the soil is found in those regions where the water table is closer to the land surface, including the western and southern Amazon and the La Plata basin. This induces an increase in ET over the southern La Plata basin, where ET is water limited. There is also a seasonal increase in ET during the dry season over parts of the southern Amazon. The second objective is to assess the role of the horizontal resolution on the effects induced by the Miguez-Macho and Fan groundwater scheme using simulations with grid sizes of 5 and 20 km. Over the La Plata basin, the effect of groundwater on ET is amplified at the 5-km resolution. Notably, over parts of the Amazon, the groundwater scheme increases ET only at the higher 5-km resolution.

Current affiliation: Institute of Physics, University of Antioquia, Medellin, Colombia.

Corresponding author address: Francina Dominguez, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801-3070. E-mail: francina@illinois.edu

Abstract

The effects of groundwater dynamics on the representation of water storage and evapotranspiration (ET) over southern South America are studied from simulations with the Noah-MP land surface model. The model is run with three different configurations: one including the Miguez-Macho and Fan groundwater scheme, another with the Simple Groundwater Model (SIMGM), and the other with free drainage at the bottom of the soil column. The first objective is to assess the effects of the groundwater schemes using a grid size typical of regional climate model simulations at the continental scale (20 km). The phase and amplitude of the fluctuations in the terrestrial water storage over the southern Amazon are improved with one of the groundwater schemes. An increase in the moisture in the top 2 m of the soil is found in those regions where the water table is closer to the land surface, including the western and southern Amazon and the La Plata basin. This induces an increase in ET over the southern La Plata basin, where ET is water limited. There is also a seasonal increase in ET during the dry season over parts of the southern Amazon. The second objective is to assess the role of the horizontal resolution on the effects induced by the Miguez-Macho and Fan groundwater scheme using simulations with grid sizes of 5 and 20 km. Over the La Plata basin, the effect of groundwater on ET is amplified at the 5-km resolution. Notably, over parts of the Amazon, the groundwater scheme increases ET only at the higher 5-km resolution.

Current affiliation: Institute of Physics, University of Antioquia, Medellin, Colombia.

Corresponding author address: Francina Dominguez, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801-3070. E-mail: francina@illinois.edu
Save
  • Anyah, R. O., Weaver C. P. , Miguez-Macho G. , Fan Y. , and Robock A. , 2008: Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land–atmosphere variability. J. Geophys. Res., 113, D07103, doi:10.1029/2007JD009087.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., Tewari M. , Chen F. , Miguez-Macho G. , Yang Z.-L. , and Niu G.-Y. , 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485–498, doi:10.1007/s10584-014-1308-8.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and Barros V. R. , 2002: The hydrologic cycle of the La Plata basin in South America. J. Hydrometeor., 3, 630–645, doi:10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Köhler M. , and Zhang Y. , 2009: Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J. Geophys. Res., 114, D02101, doi:10.1029/2008JD010761.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., Wilson C. R. , Tapley B. D. , Longuevergne L. , Yang Z. L. , and Scanlon B. R. , 2010: Recent La Plata basin drought conditions observed by satellite gravimetry. J. Geophys. Res., 115, D22108, doi:10.1029/2010JD014689.

    • Search Google Scholar
    • Export Citation
  • Collini, E. A., Berbery E. H. , Barros V. R. , and Pyle M. E. , 2008: How does soil moisture influence the early stages of the South American monsoon? J. Climate, 21, 195–213, doi:10.1175/2007JCLI1846.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Schlosser C. A. , and Brubaker K. L. , 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278–288, doi:10.1175/2008JHM1016.1.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., 2015: Groundwater in the Earth’s critical zone: Relevance to large-scale patterns and processes. Water Resour. Res., 51, 3052–3069, doi:10.1002/2015WR017037.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and Miguez-Macho G. , 2010: Potential groundwater contribution to Amazon evapotranspiration. Hydrol. Earth Syst. Sci., 14, 2039–2056, doi:10.5194/hess-14-2039-2010.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., Li H. , and Miguez-Macho G. , 2013: Global patterns of groundwater table depth. Science, 339, 940–943, doi:10.1126/science.1229881.

    • Search Google Scholar
    • Export Citation
  • Ferreira, L., Salgado H. , Saulo C. , and Collini E. , 2011: Modeled and observed soil moisture variability over a region of Argentina. Atmos. Sci. Lett., 12, 334–339, doi:10.1002/asl.342.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., and Coauthors, 2014: Water balance in the Amazon basin from a land surface model ensemble. J. Hydrometeor., 15, 2586–2614, doi:10.1175/JHM-D-14-0068.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Koirala, S., Yeh P. J.-F. , Hirabayashi Y. , Kanae S. , and Oki T. , 2014: Global-scale land surface hydrologic modeling with the representation of water table dynamics. J. Geophys. Res. Atmos., 119, 75–89, doi:10.1002/2013JD020398.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Guo Z. , Yang R. , Dirmeyer P. A. , Mitchell K. , and Puma M. J. , 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 4322–4335, doi:10.1175/2009JCLI2832.1.

    • Search Google Scholar
    • Export Citation
  • Kuppel, S., Houspanossian J. , Nosetto M. D. , and Jobbágy E. G. , 2015: What does it take to flood the Pampas?: Lessons from a decade of strong hydrological fluctuations. Water Resour. Res., 51, 2937–2950, doi:10.1002/2015WR016966.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and Swenson S. C. , 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

  • Lee, S.-J., and Berbery E. H. , 2012: Land cover change effects on the climate of the La Plata basin. J. Hydrometeor., 13, 84–102, doi:10.1175/JHM-D-11-021.1.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., Soares W. R. , Saulo C. , and Nicolini M. , 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 2261–2280, doi:10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 1–21, doi:10.1002/joc.2254.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and Dominguez F. , 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 6737–6753, doi:10.1175/JCLI-D-14-00022.1.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., Dominguez F. , and Miguez-Macho G. , 2016: Impacts of a groundwater scheme on hydrometeorological conditions over southern South America. J. Hydrometeor., 17, 2959–2978, doi:10.1175/JHM-D-16-0052.1.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Fan Y. , 2012a: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res., 117, D15113, doi:10.1029/2012JD017539.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Fan Y. , 2012b: The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res., 117, D15114, doi:10.1029/2012JD017540.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Fan Y. , Weaver C. P. , Walko R. , and Robock A. , 2007: Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res., 112, D13108, doi:10.1029/2006JD008112.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux–EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci., 17, 3707–3720, doi:10.5194/hess-17-3707-2013.

    • Search Google Scholar
    • Export Citation
  • Müller, O. V., Berbery E. H. , Alcaraz-Segura D. , and Ek M. B. , 2014: Regional model simulations of the 2008 drought in South America using a consistent set of land surface properties. J. Climate, 27, 6754–6778, doi:10.1175/JCLI-D-13-00463.1.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , Gulden L. E. , and Su H. , 2007: Development of a Simple Groundwater Model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, doi:10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, J., and Coauthors, 2014: Low-water maps of the groundwater table in the central Amazon by satellite altimetry. Geophys. Res. Lett., 41, 1981–1987, doi:10.1002/2013GL059134.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y. N., Fan Y. , Miguez-Macho G. , Yeh P. J.-F. , and Han S.-C. , 2013: The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J. Geophys. Res. Atmos., 118, 3233–3244, doi:10.1002/jgrd.50335.

    • Search Google Scholar
    • Export Citation
  • Rawitscher, F., 1948: The water economy of the vegetation of the ‘Campos Cerrados’ in Southern Brazil. J. Ecol., 36, 237–268, doi:10.2307/2256669.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Schär, C., Lüthi D. , and Beyerle U. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722–741, doi:10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and Coauthors, 2013: Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: Model performance and uncertainties. Climate Dyn., 41, 1139–1157, doi:10.1007/s00382-013-1667-2.

    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and Menéndez C. G. , 2011: Summer soil–precipitation coupling in South America. Tellus, 63A, 56–68, doi:10.1111/j.1600-0870.2010.00468.x.

    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and Berbery E. H. , 2015: A note on soil moisture memory and interactions with surface climate for different vegetation types in the La Plata basin. J. Hydrometeor., 16, 716–729, doi:10.1175/JHM-D-14-0102.1.

    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., and Wahr J. , 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.

    • Search Google Scholar
    • Export Citation
  • Tomasella, J., Hodnett M. G. , Cuartas L. A. , Nobre A. D. , Waterloo M. J. , and Oliveira S. M. , 2008: The water balance of an Amazonian micro-catchment: The effect of inter-annual variability of rainfall on hydrological behaviour. Hydrol. Processes, 22, 2133–2147, doi:10.1002/hyp.6813.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 4977–5000, doi:10.1175/JCLI3896.1.

    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., Meynadier R. , Sheffield J. , and Wood E. , 2011: Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Processes, 25, 3993–4010, doi:10.1002/hyp.8393.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 675 224 10
PDF Downloads 729 176 10