Impacts of a Groundwater Scheme on Hydroclimatological Conditions over Southern South America

J. Alejandro Martinez Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona

Search for other papers by J. Alejandro Martinez in
Current site
Google Scholar
PubMed
Close
,
Francina Dominguez Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Francina Dominguez in
Current site
Google Scholar
PubMed
Close
, and
Gonzalo Miguez-Macho Faculty of Physics, Universidad de Santiago de Compostela, Galicia, Spain

Search for other papers by Gonzalo Miguez-Macho in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A sensitivity study of the impact of a groundwater scheme on hydrometeorological variables in coupled land–atmosphere simulations over southern South America is presented. It is found that shallow water tables in the groundwater scheme lead to reduced drainage and even upward capillary fluxes over parts of the central and southern La Plata basin. This leads to an increase in the simulated moisture in the root zone, which in turn produces an increase in evapotranspiration (ET) over the southern part of the domain, where ET is water limited. There is also a decrease in the near-surface temperature, in the range 0.5°–1.0°C. During the dry season, the increases in ET and relative humidity over the central La Plata coincide with an increase in precipitation downstream. Including groundwater leads to an increase in precipitation over parts of the central and southern La Plata basin during the early rainy season (October–December). The overall increase in ET and precipitation over the southern La Plata basin during the early rainy season is 13% and 10%, respectively. The additional precipitation comes from both an increase in the availability of atmospheric moisture when the groundwater scheme is used and its effect on the atmospheric instability. In the La Plata basin, including a representation of groundwater increases simulated precipitation and partially alleviates a warm and dry bias present in simulations without realistic subsurface hydrology.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0052.s1.

Current affiliation: Institute of Physics, University of Antioquia, Medellin, Colombia.

Corresponding author address: Francina Dominguez, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801-3070. E-mail: francina@illinois.edu

Abstract

A sensitivity study of the impact of a groundwater scheme on hydrometeorological variables in coupled land–atmosphere simulations over southern South America is presented. It is found that shallow water tables in the groundwater scheme lead to reduced drainage and even upward capillary fluxes over parts of the central and southern La Plata basin. This leads to an increase in the simulated moisture in the root zone, which in turn produces an increase in evapotranspiration (ET) over the southern part of the domain, where ET is water limited. There is also a decrease in the near-surface temperature, in the range 0.5°–1.0°C. During the dry season, the increases in ET and relative humidity over the central La Plata coincide with an increase in precipitation downstream. Including groundwater leads to an increase in precipitation over parts of the central and southern La Plata basin during the early rainy season (October–December). The overall increase in ET and precipitation over the southern La Plata basin during the early rainy season is 13% and 10%, respectively. The additional precipitation comes from both an increase in the availability of atmospheric moisture when the groundwater scheme is used and its effect on the atmospheric instability. In the La Plata basin, including a representation of groundwater increases simulated precipitation and partially alleviates a warm and dry bias present in simulations without realistic subsurface hydrology.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0052.s1.

Current affiliation: Institute of Physics, University of Antioquia, Medellin, Colombia.

Corresponding author address: Francina Dominguez, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801-3070. E-mail: francina@illinois.edu

Supplementary Materials

    • Supplemental Materials (DOCX 397.30 KB)
Save
  • Anyah, R. O., Weaver C. P. , Miguez-Macho G. , Fan Y. , and Robock A. , 2008: Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled land–atmosphere variability. J. Geophys. Res., 113, D07103, doi:10.1029/2007JD009087.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., Tewari M. , Chen F. , Miguez-Macho G. , Yang Z.-L. , and Niu G.-Y. , 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485498, doi:10.1007/s10584-014-1308-8.

    • Search Google Scholar
    • Export Citation
  • Beltrán-Przekurat, A., Pielke R. A. Sr., Eastman J. L. , and Coughenour M. B. , 2012: Modelling the effects of land-use/land-cover changes on the near-surface atmosphere in southern South America. Int. J. Climatol., 32, 12061225, doi:10.1002/joc.2346.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688, doi:10.1175/BAMS-85-11-1673.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2009: Land-surface–atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 1, doi:10.3894/JAMES.2009.1.4.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., Wilson C. R. , Tapley B. D. , Longuevergne L. , Yang Z. L. , and Scanlon B. R. , 2010: Recent La Plata basin drought conditions observed by satellite gravimetry. J. Geophys. Res., 115, D22108, doi:10.1029/2010JD014689.

    • Search Google Scholar
    • Export Citation
  • Collini, E. A., Berbery E. H. , Barros V. R. , and Pyle M. E. , 2008: How does soil moisture influence the early stages of the South American monsoon? J. Climate, 21, 195213, doi:10.1175/2007JCLI1846.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Pielke R. A. Sr., 2007: Human Impacts on Weather and Climate. Cambridge University Press, 332 pp.

  • de Goncalves, L. G. G., Shuttleworth W. J. , Burke E. J. , Houser P. , Toll D. L. , Rodell M. , and Arsenault K. , 2006a: Toward a South American land data assimilation system: Aspects of land surface model spin-up using the Simplified Simple Biosphere. J. Geophys. Res., 111, D17110, doi:10.1029/2005JD006297.

    • Search Google Scholar
    • Export Citation
  • de Goncalves, L. G. G., Shuttleworth W. J. , Chou S. C. , Xue Y. , Houser P. R. , Toll D. L. , Marengo J. , and Rodell M. , 2006b: Impact of different initial soil moisture fields on Eta Model weather forecasts for South America. J. Geophys. Res., 111, D17102, doi:10.1029/2005JD006309.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Brubaker K. L. , and DelSole T. , 2009a: Import and export of atmospheric water vapor between nations. J. Hydrol., 365, 1122, doi:10.1016/j.jhydrol.2008.11.016.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Schlosser C. A. , and Brubaker K. L. , 2009b: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, doi:10.1175/2008JHM1016.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, M. E., Tomasella J. , Rodríguez D. A. , and Chou S. C. , 2013: Experiments using new initial soil moisture conditions and soil map in the Eta Model over La Plata basin. Meteor. Atmos. Phys., 121, 119136, doi:10.1007/s00703-013-0265-5.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., 2015: Groundwater in the Earth’s critical zone: Relevance to large-scale patterns and processes. Water Resour. Res., 51, 30523069, doi:10.1002/2015WR017037.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and Miguez-Macho G. , 2010: Potential groundwater contribution to Amazon evapotranspiration. Hydrol. Earth Syst. Sci., 14, 20392056, doi:10.5194/hess-14-2039-2010.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., Li H. , and Miguez-Macho G. , 2013: Global patterns of groundwater table depth. Science, 339, 940943, doi:10.1126/science.1229881.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., and Coauthors, 2009: The land–atmosphere water flux in the tropics. Global Change Biol., 15, 26942714, doi:10.1111/j.1365-2486.2008.01813.x.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Bolvin D. T. , 2014: TRMM and other data precipitation data set documentation. NASA TRMM Doc., 42 pp. [Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.]

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., Niu G.-Y. , and Yang Z.-L. , 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the central United States. J. Geophys. Res., 114, D06109, doi:10.1029/2008JD010756.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and Harris I. , 2013: CRU TS3.21: Climatic Research Unit (CRU) Time-Series (TS) version 3.21 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2012). NCAS British Atmospheric Data Centre, accessed 26 July 2016, doi:10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992.

  • Koirala, S., Yeh P. J.-F. , Hirabayashi Y. , Kanae S. , and Oki T. , 2014: Global-scale land surface hydrologic modeling with the representation of water table dynamics. J. Geophys. Res. Atmos., 119, 7589, doi:10.1002/2013JD020398.

    • Search Google Scholar
    • Export Citation
  • Kuppel, S., Houspanossian J. , Nosetto M. D. , and Jobbágy E. G. , 2015: What does it take to flood the Pampas?: Lessons from a decade of strong hydrological fluctuations. Water Resour. Res., 51, 29372950, doi:10.1002/2015WR016966.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-J., 2010: Impact of land surface vegetation change over the La Plata basin on the regional climatic environment: A study using conventional land-cover/land-use and newly developed ecosystem functional types. Ph.D. dissertation, University of Maryland, College Park, 153 pp. [Available online at http://hdl.handle.net/1903/10831.]

  • Lee, S.-J., and Berbery E. H. , 2012: Land cover change effects on the climate of the La Plata basin. J. Hydrometeor., 13, 84102, doi:10.1175/JHM-D-11-021.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-J., Berbery E. H. , and Alcaraz-Segura D. , 2013: The impact of ecosystem functional type changes on the La Plata basin climate. Adv. Atmos. Sci., 30, 13871405, doi:10.1007/s00376-012-2149-x.

    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., Davin E. D. , Guillod B. P. , and Seneviratne S. I. , 2015: Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Climate Dyn., 44, 27692786, doi:10.1007/s00382-014-2203-8.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., and Dominguez F. , 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, doi:10.1175/JCLI-D-14-00022.1.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. A., Dominguez F. , and Miguez-Macho G. , 2016: Effects of a groundwater scheme on the simulation of soil moisture and evapotranspiration over southern South America. J. Hydrometeor., 17, 29412957, doi:10.1175/JHM-D-16-0051.1.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Fan Y. , 2012: The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res., 117, D15114, doi:10.1029/2012JD017540.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Stenchikov G. L. , and Robock A. , 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Fan Y. , Weaver C. P. , Walko R. , and Robock A. , 2007: Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res., 112, D13108, doi:10.1029/2006JD008112.

    • Search Google Scholar
    • Export Citation
  • Müller, O. V., Berbery E. H. , Alcaraz-Segura D. , and Ek M. B. , 2014: Regional model simulations of the 2008 drought in South America using a consistent set of land surface properties. J. Climate, 27, 67546778, doi:10.1175/JCLI-D-13-00463.1.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , Gulden L. E. , and Su H. , 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, doi:10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., Takle E. , Segal M. , and Turner R. , 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124, 17861802, doi:10.1175/1520-0493(1996)124<1786:IOMPSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Ruiz, J. J., Saulo C. , and Nogués-Paegle J. , 2010: WRF model sensitivity to choice of parameterization over South America: Validation against surface variables. Mon. Wea. Rev., 138, 33423355, doi:10.1175/2010MWR3358.1.

    • Search Google Scholar
    • Export Citation
  • Saulo, C., Ferreira L. , Nogués-Paegle J. , Seluchi M. , and Ruiz J. , 2010: Land–atmosphere interactions during a northwestern Argentina low event. Mon. Wea. Rev., 138, 24812498, doi:10.1175/2010MWR3227.1.

    • Search Google Scholar
    • Export Citation
  • Schär, C., Lüthi D. , and Beyerle U. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, doi:10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Solman, S. A., and Pessacg N. L. , 2012: Regional climate simulations over South America: Sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model. Climate Dyn., 38, 281300, doi:10.1007/s00382-011-1049-6.

    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and Coauthors, 2013: Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: Model performance and uncertainties. Climate Dyn., 41, 11391157, doi:10.1007/s00382-013-1667-2.

    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and Menéndez C. G. , 2011: Summer soil–precipitation coupling in South America. Tellus, 63A, 5668, doi:10.1111/j.1600-0870.2010.00468.x.

    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and Berbery E. H. , 2015: A note on soil moisture memory and interactions with surface climate for different vegetation types in the La Plata basin. J. Hydrometeor., 16, 716729, doi:10.1175/JHM-D-14-0102.1.

    • Search Google Scholar
    • Export Citation
  • Spenneman, P. C., and Saulo A. C. , 2015: An estimation of the land–atmosphere coupling strength in South America using the Global Land Data Assimilation System. Int. J. Climatol., 35, 41514166, doi:10.1002/joc.4274.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and Zeng X. , 2013: Development of global hourly 0.5° land surface air temperature datasets. J. Climate, 26, 76767691, doi:10.1175/JCLI-D-12-00682.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., Barlage M. , Castro C. , and Fling K. , 2010: Comparison of land–precipitation coupling strength using observations and models. J. Hydrometeor., 11, 979994, doi:10.1175/2010JHM1226.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 336 90 11
PDF Downloads 312 68 5