Why Do Global Reanalyses and Land Data Assimilation Products Underestimate Snow Water Equivalent?

Patrick D. Broxton Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona

Search for other papers by Patrick D. Broxton in
Current site
Google Scholar
PubMed
Close
,
Xubin Zeng Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
, and
Nicholas Dawson Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona

Search for other papers by Nicholas Dawson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is a large uncertainty of snow water equivalent (SWE) in reanalyses and the Global Land Data Assimilation System (GLDAS), but the primary reason for this uncertainty remains unclear. Here several reanalysis products and GLDAS with different land models are evaluated and the primary reason for their deficiencies are identified using two high-resolution SWE datasets, including the Snow Data Assimilation System product and a new dataset for SWE and snowfall for the conterminous United States (CONUS) that is based on PRISM precipitation and temperature data and constrained with thousands of point snow observations of snowfall and snow thickness. The reanalyses and GLDAS products substantially underestimate SWE in the CONUS compared to the high-resolution SWE data. This occurs irrespective of biases in atmospheric forcing information or differences in model resolution. Furthermore, reanalysis and GLDAS products that predict more snow ablation at near-freezing temperatures have larger underestimates of SWE. Since many of the products do not assimilate information about SWE and snow thickness, this indicates a problem with the implementation of land models and pinpoints the need to improve the treatment of snow ablation in these systems, especially at near-freezing temperatures.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0056.s1.

Corresponding author address: Patrick Broxton, Department of Hydrology and Atmospheric Sciences, University of Arizona, 1118 E. 4th St., Rm. 542, Tucson, AZ 85721-0081. E-mail: broxtopd@email.arizona.edu

Abstract

There is a large uncertainty of snow water equivalent (SWE) in reanalyses and the Global Land Data Assimilation System (GLDAS), but the primary reason for this uncertainty remains unclear. Here several reanalysis products and GLDAS with different land models are evaluated and the primary reason for their deficiencies are identified using two high-resolution SWE datasets, including the Snow Data Assimilation System product and a new dataset for SWE and snowfall for the conterminous United States (CONUS) that is based on PRISM precipitation and temperature data and constrained with thousands of point snow observations of snowfall and snow thickness. The reanalyses and GLDAS products substantially underestimate SWE in the CONUS compared to the high-resolution SWE data. This occurs irrespective of biases in atmospheric forcing information or differences in model resolution. Furthermore, reanalysis and GLDAS products that predict more snow ablation at near-freezing temperatures have larger underestimates of SWE. Since many of the products do not assimilate information about SWE and snow thickness, this indicates a problem with the implementation of land models and pinpoints the need to improve the treatment of snow ablation in these systems, especially at near-freezing temperatures.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0056.s1.

Corresponding author address: Patrick Broxton, Department of Hydrology and Atmospheric Sciences, University of Arizona, 1118 E. 4th St., Rm. 542, Tucson, AZ 85721-0081. E-mail: broxtopd@email.arizona.edu

Supplementary Materials

    • Supplemental Materials (DOCX 122.38 KB)
Save
  • Andreadis, K. M., Storck P. , and Lettenmaier D. P. , 2009: Modeling snow accumulation and ablation processes in forested environments. Water Resour. Res., 45, W05429, doi:10.1029/2008WR007042.

    • Search Google Scholar
    • Export Citation
  • Bales, R. C., Molotch N. P. , Painter T. H. , Dettinger M. D. , Rice R. , and Dozier J. , 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Search Google Scholar
    • Export Citation
  • Barrett, A. P., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) products at NSIDC. NSIDC Special Rep. 11, 19 pp. [Available online at http://nsidc.org/pubs/documents/special/nsidc_special_report_11.pdf.]

  • Bowling, L. C., and Coauthors, 2003: Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 1: Experiment description and summary intercomparisons. Global Planet. Change, 38, 130, doi:10.1016/S0921-8181(03)00003-1.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., Brasnett B. , and Robinson D. , 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 114, doi:10.3137/ao.410101.

    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., Dawson N. , and Zeng X. , 2016: Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth. Earth Space Sci., 3, 246–256, doi:10.1002/2016EA000174.

    • Search Google Scholar
    • Export Citation
  • Brun, E., Vionnet V. , Boone A. , Decharme B. , Peings Y. , and Valette R. , 2013: Simulation of northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203219, doi:10.1175/JHM-D-12-012.1.

    • Search Google Scholar
    • Export Citation
  • Carroll, T., Cline D. , Fall G. , Nilsson A. , Li L. , and Rost A. , 2001: NOHRSC operations and the simulation of snow cover properties for the coterminous U.S. Proc. 69th Annual Western Snow Conf., Sun Valley, ID, Western Snow Conference, 14 pp. [Available online at http://www.westernsnowconference.org/node/185.]

  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2014: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res. Atmos., 119, 13 79513 819, doi:10.1002/2014JD022167.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Halbleib M. , Smith J. I. , Gibson W. P. , Doggett M. K. , Taylor G. H. , Curtis J. , and Pasteris P. P. , 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Dawson, N., Broxton P. D. , Zeng X. , Leuthold M. , and Holbrook P. , 2016: An evaluation of snow initializations for NCEP global and regional forecasting models. J. Hydrometeor., 17, 18851901, doi:10.1175/JHM-D-15-0227.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • De Goncalves, L. G. G., Shuttleworth W. J. , Chou S. C. , Xue Y. , Houser P. R. , Toll D. L. , Marengo J. , and Rodell M. , 2006: Impact of different initial soil moisture fields on Eta model weather forecasts for South America. J. Geophys. Res., 111, D17102, doi:10.1029/2005JD006309.

    • Search Google Scholar
    • Export Citation
  • De Rosnay, P., Balsamo G. , Albergel C. , Muñoz-Sabater J. , and Isaksen L. , 2014: Initialisation of land surface variables for numerical weather prediction. Surv. Geophys., 35, 607621, doi:10.1007/s10712-012-9207-x.

    • Search Google Scholar
    • Export Citation
  • Dixon, D., Boon S. , and Silins U. , 2014: Watershed‐scale controls on snow accumulation in a small montane watershed, southwestern Alberta, Canada. Hydrol. Processes, 28, 12941306, doi:10.1002/hyp.9667.

    • Search Google Scholar
    • Export Citation
  • Douville, H., Royer J.-F. , and Mahfouf J.-F. , 1995: A new snow parameterization for the Météo-France climate model. Part I: Validation in stand-alone experiments. Climate Dyn., 12, 2135, doi:10.1007/BF00208760.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Vasiljevic D. , and Viterbo P. , 2004: ECMWF’s global snow analysis: Assessment and revision based on satellite observations. J. Appl. Meteor. Climatol., 43, 12821294, doi:10.1175/1520-0450(2004)043<1282:EGSAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Erxleben, J., Elder K. , and Davis R. , 2002: Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrol. Processes, 16, 36273649, doi:10.1002/hyp.1239.

    • Search Google Scholar
    • Export Citation
  • Essery, R., and Coauthors, 2009: SNOWMIP2: An evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc., 90, 11201135, doi:10.1175/2009BAMS2629.1.

    • Search Google Scholar
    • Export Citation
  • Essery, R., Morin S. , Lejeune Y. , and Ménard C. B. , 2013: A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131148, doi:10.1016/j.advwatres.2012.07.013.

    • Search Google Scholar
    • Export Citation
  • Etchevers, P., and Coauthors, 2002: SnowMIP, an intercomparison of snow models: First results. Proc. of the Int. Snow Science Workshop, Penticton, BC, Canada, International Snow Science Workshop, 353360. [Available online at http://arc.lib.montana.edu/snow-science/objects/issw-2002-353-360.pdf.]

  • Feng, S., Sahoo A. , Arsenault K. , Houser P. , Luo Y. , and Troy T. , 2008: The impact of snow model complexity at three CLPX sites. J. Hydrometeor., 9, 14641481, doi:10.1175/2008JHM860.1.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., and Preston J. W. , 1997: Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys. Res. Lett., 24, 22072210, doi:10.1029/97GL02099.

    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., and Shukla J. , 1976: An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci., 33, 24612462, doi:10.1175/1520-0469(1976)033<2461:AARBES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., Hodgkins G. A. , Keim B. D. , and Dudley R. W. , 2004: Changes in the proportion of precipitation occurring as snow in New England (1949–2000). J. Climate, 17, 26262636, doi:10.1175/1520-0442(2004)017<2626:CITPOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., Dettinger M. D. , and Cayan D. R. , 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, doi:10.1175/JCLI3850.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 26972715, doi:10.1029/91JD01696.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Xia Y. , Mitchell K. E. , Ek M. B. , and Lettenmaier D. P. , 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738, doi:10.1175/2009JHM1174.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Deems J. S. , Schneider D. , Barsugli J. J. , and Molotch N. P. , 2014: Filling in the gaps: Inferring spatially distributed precipitation from gauge observations over complex terrain. Water Resour. Res., 50, 85898610, doi:10.1002/2014WR015442.

    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., and Nogués-Bravo D. , 2006: Interpolating local snow depth data: An evaluation of methods. Hydrol. Processes, 20, 22172232, doi:10.1002/hyp.6199.

    • Search Google Scholar
    • Export Citation
  • Magnusson, J., Wever N. , Essery R. , Helbig N. , Winstral A. , and Jonas T. , 2015: Evaluating snow models with varying process representations for hydrological applications. Water Resour. Res., 51, 27072723, doi:10.1002/2014WR016498.

    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., 2009: Reconstructing snow water equivalent in the Rio Grande headwaters using remotely sensed snow cover data and a spatially distributed snowmelt model. Hydrol. Processes, 23, 10761089, doi:10.1002/hyp.7206.

    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., Colee M. T. , Bales R. C. , and Dozier J. , 2005: Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: The impact of digital elevation data and independent variable selection. Hydrol. Processes, 19, 14591479, doi:10.1002/hyp.5586.

    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., Derksen C. , Kushner P. J. , and Brown R. , 2015: Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J. Climate, 28, 80378051, doi:10.1175/JCLI-D-15-0229.1.

    • Search Google Scholar
    • Export Citation
  • National Ice Center, 2008: IMS daily Northern Hemisphere snow and ice analysis at 1 km, 4 km, and 24 km resolutions, version 1. Subset used: 24 km data, National Snow and Ice Data Center, accessed 12 December 2014, doi:10.7265/N52R3PMC.

  • NCDC, 2006: Data Documentation for Data Set 3200 (DSI-3200). National Climatic Data Center, 19 pp. [Available online at http://www1.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/td3200.pdf.]

  • Pan, N., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., and Lundquist J. D. , 2012: Comparing and combining SWE estimates from the SNOW-17 model using PRISM and SWE reconstruction. Water Resour. Res., 48, W01506, doi:10.1029/2011WR010542.

    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., Lundquist J. D. , and Clark M. P. , 2015: Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework. Hydrol. Earth Syst. Sci., 19, 31533179, doi:10.5194/hess-19-3153-2015.

    • Search Google Scholar
    • Export Citation
  • Ramsay, B. H., 1998: The interactive multisensor snow and ice mapping system. Hydrol. Processes, 12, 15371546, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.0.CO;2-A.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , de Lannoy G. J. , Forman B. A. , Liu Q. , Mahanama S. P. , and Touré A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and Kukla G. , 1985: Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J. Climate Appl. Meteor., 24, 402411, doi:10.1175/1520-0450(1985)024<0402:MSAOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Houser P. R. , 2004: Updating a land surface model with MODIS-derived snow cover. J. Hydrometeor., 5, 10641075, doi:10.1175/JHM-395.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Chen J. , Kato H. , Famiglietti J. S. , Nigro J. , and Wilson C. R. , 2007: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J., 15, 159166, doi:10.1007/s10040-006-0103-7.

    • Search Google Scholar
    • Export Citation
  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and Coauthors, 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). Mon. Wea. Rev., 128, 301321, doi:10.1175/1520-0493(2000)128<0301:SOABGH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Clark M. P. , Armstrong R. L. , McGinnis D. A. , and Pulwarty R. S. , 1999: Characteristics of the western United States snowpack from Snowpack Telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., Ducharne A. , Koster K. , and Suarez M. , 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228242, doi:10.1175/1525-7541(2001)002<0228:TIODSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., Famiglietti J. S. , Rodell M. , Chen J. , and Wilson C. R. , 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, doi:10.1029/2006WR005779.

    • Search Google Scholar
    • Export Citation
  • Takala, M., Luojus K. , Pulliainen J. , Derksen C. , Lemmetyinen J. , Kärnä J. P. , Koskinen J. , and Bojkov B. , 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 35173529, doi:10.1016/j.rse.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., Zeng X. , and Decker M. , 2010: Improving snow processes in the Noah land model. J. Geophys. Res., 115, D20108, doi:10.1029/2009JD013761.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., and Rodell M. , 2009: Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J. Hydrometeor., 10, 130148, doi:10.1175/2008JHM1042.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., Shaikh M. , Dai Y. , Dickinson R. E. , and Myneni R. , 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, 15, 18321854, doi:10.1175/1520-0442(2002)015<1832:COTCLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Wang W.-C. , and Wei J. , 2008: Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, doi:10.1029/2008JD009807.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 873 321 25
PDF Downloads 775 258 21