Extreme Rainfall from Landfalling Tropical Cyclones in the Eastern United States: Hurricane Irene (2011)

Maofeng Liu Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Maofeng Liu in
Current site
Google Scholar
PubMed
Close
and
James A. Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hurricane Irene produced catastrophic rainfall and flooding in portions of the eastern United States from 27 to 29 August 2011. Like a number of tropical cyclones that have produced extreme flooding in the northeastern United States, Hurricane Irene was undergoing extratropical transition during the period of most intense rainfall. In this study the rainfall distribution of landfalling tropical cyclones is examined, principally through analyses of radar rainfall fields and high-resolution simulations using the Weather Research and Forecasting (WRF) Model. In addition to extratropical transition, the changing storm environment at landfall and orographic precipitation mechanisms can be important players in controlling the distribution of extreme rainfall. Rainfall distribution from landfalling tropical cyclones is examined from a Lagrangian perspective, focusing on times of landfall and extratropical transition, as well as interactions of the storm circulation with mountainous terrain. WRF simulations capture important features of rainfall distribution, including the pronounced change in rainfall distribution during extratropical transition. Synoptic-scale analyses show that a deep baroclinic zone developed and strengthened in the left-front quadrant of Irene, controlling rainfall distribution over the regions experiencing most severe flooding. Numerical experiments were performed with WRF to examine the role of mountainous terrain in altering rainfall distribution. Analyses of Hurricane Irene are placed in a larger context through analyses of Hurricane Hannah (2008) and Hurricane Sandy (2012).

Corresponding author address: Maofeng Liu, Department of Civil and Environmental Engineering, Princeton University, E208 Equad, Princeton, NJ 08544. E-mail: maofeng@princeton.edu

Abstract

Hurricane Irene produced catastrophic rainfall and flooding in portions of the eastern United States from 27 to 29 August 2011. Like a number of tropical cyclones that have produced extreme flooding in the northeastern United States, Hurricane Irene was undergoing extratropical transition during the period of most intense rainfall. In this study the rainfall distribution of landfalling tropical cyclones is examined, principally through analyses of radar rainfall fields and high-resolution simulations using the Weather Research and Forecasting (WRF) Model. In addition to extratropical transition, the changing storm environment at landfall and orographic precipitation mechanisms can be important players in controlling the distribution of extreme rainfall. Rainfall distribution from landfalling tropical cyclones is examined from a Lagrangian perspective, focusing on times of landfall and extratropical transition, as well as interactions of the storm circulation with mountainous terrain. WRF simulations capture important features of rainfall distribution, including the pronounced change in rainfall distribution during extratropical transition. Synoptic-scale analyses show that a deep baroclinic zone developed and strengthened in the left-front quadrant of Irene, controlling rainfall distribution over the regions experiencing most severe flooding. Numerical experiments were performed with WRF to examine the role of mountainous terrain in altering rainfall distribution. Analyses of Hurricane Irene are placed in a larger context through analyses of Hurricane Hannah (2008) and Hurricane Sandy (2012).

Corresponding author address: Maofeng Liu, Department of Civil and Environmental Engineering, Princeton University, E208 Equad, Princeton, NJ 08544. E-mail: maofeng@princeton.edu
Save
  • Akter, N., and Tsuboki K. , 2012: Numerical simulation of Cyclone Sidr using a cloud-resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789–810, doi:10.1175/2011MWR3643.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, S. T., and Ashley W. S. , 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805–818, doi:10.1175/2007JAMC1611.1.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., and Bosart L. F. , 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 1063–1081, doi:10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., Bosart L. F. , and Aiyyer A. R. , 2007: Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. Mon. Wea. Rev., 135, 2185–2206, doi:10.1175/MWR3382.1.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and Cangialosi J. , 2011: Tropical cyclone report, Hurricane Irene, 21–28 August 2011. National Hurricane Center, 45 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf.]

  • Bao, X., and Coauthors, 2015: Diagnostics for an extreme rain event near Shanghai during the landfall of Typhoon Fitow (2013). Mon. Wea. Rev., 143, 3377–3405, doi:10.1175/MWR-D-14-00241.1.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, doi:10.1029/2010GL046258.

    • Search Google Scholar
    • Export Citation
  • Barthel, F., and Neumayer E. , 2012: A trend analysis of normalized insured damage from natural disasters. Climatic Change, 113, 215–237, doi:10.1007/s10584-011-0331-2.

    • Search Google Scholar
    • Export Citation
  • Blackwell, K. G., 2000: The Evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Mon. Wea. Rev., 128, 4002–4016, doi:10.1175/1520-0493(2000)129<4002:TEOHDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., Landsea C. W. , and Gibney E. J. , 2011: The deadliest, costliest, and most intense United States tropical cyclones of from 1851 to 2010 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS NHC-6, 47 pp. [Available online at http://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf.]

  • Bosart, L. F., and Lackmann G. M. , 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 3268–3291, doi:10.1175/1520-0493(1995)123<3268:PTCRIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brun, J., and Barros A. P. , 2014: Mapping the role of tropical cyclones on the hydroclimate of the southeast United States: 2002–2011. Int. J. Climatol., 34, 494–517, doi:10.1002/joc.3703.

    • Search Google Scholar
    • Export Citation
  • Chen, S. Y. S., Knaff J. A. , and Marks F. D. , 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131, 2905–2926, doi:10.1175/1520-0493(2003)131<2905:NSOTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and Molinari J. , 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110–2123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and Molinari J. , 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366–376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and Houze R. A. , 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 3269–3293, doi:10.1175/2009MWR2827.1.

    • Search Google Scholar
    • Export Citation
  • Dong, M., Chen L. , Li Y. , and Lu C. , 2010: Rainfall reinforcement associated with landfalling tropical cyclones. J. Atmos. Sci., 67, 3541–3558, doi:10.1175/2010JAS3268.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and Hart R. E. , 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909–925, doi:10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, S., Meng Z. , Zhang F. , and Bosart L. F. , 2009: Observational analysis of heavy rainfall mechanisms associated with severe Tropical Storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137, 1881–1897, doi:10.1175/2008MWR2669.1.

    • Search Google Scholar
    • Export Citation
  • Griffin, K. S., and Bosart L. F. , 2014: The extratropical transition of Tropical Cyclone Edisoana (1990). Mon. Wea. Rev., 142, 2772–2793, doi:10.1175/MWR-D-13-00282.1.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585–616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., McIntyre M. E. , and Robertson A. W. , 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-L., Yang M.-J. , and Sui C.-H. , 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112–129, doi:10.1175/JAS-D-13-053.1.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 1052–1092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309–325, doi:10.2151/jmsj.2011-402.

    • Search Google Scholar
    • Export Citation
  • Knight, D. B., and Davis R. E. , 2009: Contribution of tropical cyclones to extreme rainfall events in the southeastern United States. J. Geophys. Res., 114, D23102, doi:10.1029/2009JD012511.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., and Perry L. B. , 2010: Relationships between tropical cyclones and heavy rainfall in the Carolina region of the USA. Int. J. Climatol., 30, 522–534, doi:10.1002/joc.1894.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Easterling D. R. , Kristovich D. A. R. , Gleason B. , Stoecker L. , and Smith R. , 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, doi:10.1029/2010GL045164.

    • Search Google Scholar
    • Export Citation
  • Langousis, A., and Veneziano D. , 2009: Theoretical model of rainfall in tropical cyclones for the assessment of long-term risk. J. Geophys. Res., 114, D02106, doi:10.1029/2008JD010080.

    • Search Google Scholar
    • Export Citation
  • Lin, N., Smith J. A. , Villarini G. , Marchok T. P. , and Baeck M. L. , 2010: Modeling extreme rainfall, winds, and surge from Hurricane Isabel (2003). Wea. Forecasting, 25, 1342–1361, doi:10.1175/2010WAF2222349.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/webprogram/Paper83847.html.]

  • Lonfat, M., Rogers R. , Marchok T. , and Marks F. D. Jr., 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135, 3086–3097, doi:10.1175/MWR3433.1.

    • Search Google Scholar
    • Export Citation
  • Marchok, T., Rogers R. , and Tuleya R. , 2007: Validation schemes for tropical cyclone quantitative precipitation forecasts: Evaluation of operational models for U.S. landfalling cases. Wea. Forecasting, 22, 726–746, doi:10.1175/WAF1024.1.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Kappler G. , and DeMaria M. , 2002: Development of a tropical cyclone Rainfall Climatology and Persistence (RCLIPER) model. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 327–328.

  • Milrad, S. M., Atallah E. H. , and Gyakum J. R. , 2009: Dynamical and precipitation structures of poleward-moving tropical cyclones in eastern Canada, 1979–2005. Mon. Wea. Rev., 137, 836–851, doi:10.1175/2008MWR2578.1.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., and Nolan D. S. , 2015: Spiral rainbands in a numerical simulation of Hurricane Bill (2009). Part I: Structures and comparisons to observations. J. Atmos. Sci., 72, 164–190, doi:10.1175/JAS-D-14-0058.1.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Huffines G. R. , 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 1179–1193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., Chen S. , Tenerelli J. , and Willoughby H. , 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577–1599, doi:10.1175//2546.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Villarini G. , and Baeck M. L. , 2011: Mixture distributions and the hydroclimatology of extreme rainfall and flooding in the eastern United States. J. Hydrometeor., 12, 294–309, doi:10.1175/2010JHM1242.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, doi:10.1016/S0065-2687(08)60262-9.

  • Smith, R. B., Schafer P. , Kirshbaum D. , and Regina E. , 2009: Orographic enhancement of precipitation inside Hurricane Dean. J. Hydrometeor., 10, 820–831, doi:10.1175/2008JHM1057.1.

    • Search Google Scholar
    • Export Citation
  • Song, J. J., Han J. J. , and Wang Y. A. , 2011: Cyclone phase space characteristics of the extratropical transitioning tropical cyclones over the western North Pacific. Acta Meteor. Sin., 25, 78–90, doi:10.1007/s13351-011-0006-y.

    • Search Google Scholar
    • Export Citation
  • Sturdevant-Rees, P., Smith J. A. , Morrison J. , and Baeck M. L. , 2001: Tropical storms and the flood hydrology of the central Appalachians. Water Resour. Res., 37, 2143–2168, doi:10.1029/2000WR900310.

    • Search Google Scholar
    • Export Citation
  • Sun, X., and Barros A. P. , 2012: The impact of forcing datasets on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians. Mon. Wea. Rev., 140, 3300–3326, doi:10.1175/MWR-D-11-00345.1.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., DeMaria M. , and Kuligowski R. J. , 2007: Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. landfalling tropical storms. Wea. Forecasting, 22, 56–70, doi:10.1175/WAF972.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Smith J. A. , 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, doi:10.1029/2009WR008395.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Smith J. A. , 2013: Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1995–2010. Atmos. Res., 124, 137–148, doi:10.1016/j.atmosres.2012.12.017.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Smith J. A. , Baeck M. L. , Marchok T. , and Vecchi G. A. , 2011: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res., 116, D23116, doi:10.1029/2011JD016175.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Goska R. , Smith J. A. , and Vecchi G. A. , 2014: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 1381–1388, doi:10.1175/BAMS-D-13-00060.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., Li Q. , and Fu G. , 2012: Determining the extratropical transition onset and completion times of Typhoons Mindulle (2004) and Yagi (2006) using four methods. Wea. Forecasting, 27, 1394–1412, doi:10.1175/WAF-D-11-00148.1.

    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and Ritchie E. A. , 2014: A 40-year climatology of extratropical transition in the eastern North Pacific. J. Climate, 27, 5999–6015, doi:10.1175/JCLI-D-13-00645.1.

    • Search Google Scholar
    • Export Citation
  • Xie, B., and Zhang F. , 2012: Impacts of typhoon track and island topography on the heavy rainfalls in Taiwan associated with Morakot (2009). Mon. Wea. Rev., 140, 3379–3394, doi:10.1175/MWR-D-11-00240.1.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and Cheng L.-W. , 2013: Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009). J. Atmos. Sci., 70, 2894–2915, doi:10.1175/JAS-D-12-0340.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 786 270 34
PDF Downloads 643 219 19