Seasonal Variation in Canopy Aerodynamics and the Sensitivity of Transpiration Estimates to Wind Velocity in Broadleaved Deciduous Species

D. M. Barnard Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado

Search for other papers by D. M. Barnard in
Current site
Google Scholar
PubMed
Close
and
W. L. Bauerle Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado

Search for other papers by W. L. Bauerle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Characterization of seasonal dynamics in wind speed attenuation within a plant canopy α is necessary for modeling leaf boundary layer conductance , canopy–atmosphere coupling Ω, and transpiration at multiple scales. The goals of this study were to characterize seasonal variation in α in four tree species with canopy wind profiles and a canopy-structure model, to quantify the impact of α on estimates of and Ω, and to determine the influence of variable wind speed on transpiration estimates from a biophysical model [Multi-Array Evaporation Stand Tree Radiation Assemblage (MAESTRA)]. Among species, α varied significantly with above-canopy wind speed and seasonal canopy development. At the mean above-canopy wind speed (1.5 m s−1), α could be predicted using a linear model with leaf area index as the input variable (coefficient of determination R2 = 0.78). However, the canopy-structure model yielded improved predictions (R2 = 0.92) by including canopy height and leaf width. By midseason, increasing canopy leaf area and α resulted in lower within-canopy wind speeds, a decrease in by 20%–50%, and a peak in Ω. Testing a discrete increase in wind speed (0.6–2.4 m s−1; seasonal mean plus/minus one standard deviation) had variable influence on transpiration estimates (from −30% to +20%), which correlated strongly with vapor pressure deficit (R2 = 0.83). Given the importance of α in accurate representation of , Ω, and transpiration, it is concluded that α needs to be given special attention in plant canopies that undergo substantial seasonal changes, especially densely foliated canopies (i.e., leaf area index >1) and in areas with lower native wind speeds (i.e., <2 m s−1).

Corresponding author e-mail: D. M. Barnard, david.m.barnard@colorado.edu

Abstract

Characterization of seasonal dynamics in wind speed attenuation within a plant canopy α is necessary for modeling leaf boundary layer conductance , canopy–atmosphere coupling Ω, and transpiration at multiple scales. The goals of this study were to characterize seasonal variation in α in four tree species with canopy wind profiles and a canopy-structure model, to quantify the impact of α on estimates of and Ω, and to determine the influence of variable wind speed on transpiration estimates from a biophysical model [Multi-Array Evaporation Stand Tree Radiation Assemblage (MAESTRA)]. Among species, α varied significantly with above-canopy wind speed and seasonal canopy development. At the mean above-canopy wind speed (1.5 m s−1), α could be predicted using a linear model with leaf area index as the input variable (coefficient of determination R2 = 0.78). However, the canopy-structure model yielded improved predictions (R2 = 0.92) by including canopy height and leaf width. By midseason, increasing canopy leaf area and α resulted in lower within-canopy wind speeds, a decrease in by 20%–50%, and a peak in Ω. Testing a discrete increase in wind speed (0.6–2.4 m s−1; seasonal mean plus/minus one standard deviation) had variable influence on transpiration estimates (from −30% to +20%), which correlated strongly with vapor pressure deficit (R2 = 0.83). Given the importance of α in accurate representation of , Ω, and transpiration, it is concluded that α needs to be given special attention in plant canopies that undergo substantial seasonal changes, especially densely foliated canopies (i.e., leaf area index >1) and in areas with lower native wind speeds (i.e., <2 m s−1).

Corresponding author e-mail: D. M. Barnard, david.m.barnard@colorado.edu
Save
  • Ács, F., 1994: A coupled soil–vegetation scheme: Description, parameters, validation, and sensitivity studies. J. Appl. Meteor., 33, 268284, doi:10.1175/1520-0450(1994)033<0268:ACSVSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aphalo, P., and Jarvis P. , 1991: Do stomata respond to relative humidity? Plant Cell Environ., 14, 127132, doi:10.1111/j.1365-3040.1991.tb01379.x.

    • Search Google Scholar
    • Export Citation
  • Baldwin, V. C., Jr., and Peterson K. D. , 1997: Predicting the crown shape of loblolly pine trees. Can. J. For. Res., 27, 102107, doi:10.1139/x96-100.

    • Search Google Scholar
    • Export Citation
  • Barnard, D., and Bauerle W. , 2013: The implications of minimum stomatal conductance on modeling water flux in forest canopies. J. Geophys. Res. Biogeosci., 118, 13221333, doi:10.1002/jgrg.20112.

    • Search Google Scholar
    • Export Citation
  • Bauerle, W. L., and Bowden J. D. , 2011: Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models. J. Exp. Bot., 62, 42954307, doi:10.1093/jxb/err156.

    • Search Google Scholar
    • Export Citation
  • Bauerle, W. L., Bowden J. D. , McLeod M. F. , and Toler J. E. , 2004: Modeling intra-crown and intra-canopy interactions in red maple: Assessment of light transfer on carbon dioxide and water vapor exchange. Tree Physiol., 24, 589597, doi:10.1093/treephys/24.5.589.

    • Search Google Scholar
    • Export Citation
  • Bauerle, W. L., Daniels A. B. , and Barnard D. M. , 2014: Carbon and water flux responses to physiology by environment interactions: A sensitivity analysis of variation in climate on photosynthetic and stomatal parameters. Climate Dyn., 42, 25392554, doi:10.1007/s00382-013-1894-6.

    • Search Google Scholar
    • Export Citation
  • Benyon, R. G., 1999: Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree Physiol., 19, 853859, doi:10.1093/treephys/19.13.853.

    • Search Google Scholar
    • Export Citation
  • Cammalleri, C., Anderson M. C. , Ciraolo G. , D’Urso G. , Kustas W. P. , La Loggia G. , and Minacapilli M. , 2010: The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing–based two-source model. Hydrol. Earth Syst. Sci., 14, 26432659, doi:10.5194/hess-14-2643-2010.

    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., and Norman J. M. , 1998: An Introduction to Environmental Biophysics. Springer, 286 pp.

  • Campoe, O. C., Stape J. L. , Nouvellon Y. , Laclau J.-P. , Bauerle W. L. , Binkley D. , and Le Maire G. , 2013: Stem production, light absorption and light use efficiency between dominant and non-dominant trees of Eucalyptus grandis across a productivity gradient in Brazil. For. Ecol. Manage., 288, 1420, doi:10.1016/j.foreco.2012.07.035.

    • Search Google Scholar
    • Export Citation
  • Cionco, R. M., 1965: A mathematical model for air flow in a vegetative canopy. J. Appl. Meteor., 4, 517522, doi:10.1175/1520-0450(1965)004<0517:AMMFAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cionco, R. M., 1972: A wind-profile index for canopy flow. Bound.-Layer Meteor., 3, 255263, doi:10.1007/BF02033923.

  • Cionco, R. M., 1978: Analysis of canopy index values for various canopy densities. Bound.-Layer Meteor., 15, 8193, doi:10.1007/BF00165507.

    • Search Google Scholar
    • Export Citation
  • Daudet, F., Le Roux X. , Sinoquet H. , and Adam B. , 1999: Wind speed and leaf boundary layer conductance variation within tree crown: Consequences on leaf-to-atmosphere coupling and tree functions. Agric. For. Meteor., 97, 171185, doi:10.1016/S0168-1923(99)00079-9.

    • Search Google Scholar
    • Export Citation
  • Dawson, T. E., Burgess S. S. O. , Tu K. P. , Oliveira R. S. , Santiago L. S. , Fisher J. B. , Simonin K. A. , and Ambrose A. R. , 2007: Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol., 27, 561575, doi:10.1093/treephys/27.4.561.

    • Search Google Scholar
    • Export Citation
  • Drake, B., Raschke K. , and Salisbury F. , 1970: Temperature and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind speed. Plant Physiol., 46, 324330, doi:10.1104/pp.46.2.324.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., Caemmerer S. , and Berry J. , 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890, doi:10.1007/BF00386231.

    • Search Google Scholar
    • Export Citation
  • Field, C. B., 1987: Leaf-age effects on stomatal conductance. Stomatal Function, E. Zeiger, G. D. Farquhar, and J. R. Cowan, Eds., Stanford University Press, 367–382.

  • Goudriaan, J., 1977: Crop Micrometeorology: A Simulation Study. Pudoc, Center for Agricultural Publishing and Documentation, 249 pp.

  • Gutiérrez, M., Meinzer F. C. , and Grantz D. , 1994: Regulation of transpiration in coffee hedgerows: Covariation of environmental variables and apparent responses of stomata to wind and humidity. Plant Cell Environ., 17, 13051313, doi:10.1111/j.1365-3040.1994.tb00532.x.

    • Search Google Scholar
    • Export Citation
  • Hobbins, M., Wood A. , Strubel D. , and Werner K. , 2012: What drives the variability of evaporative demand across the conterminous United States? J. Hydrometeor., 13, 11951214, doi:10.1175/JHM-D-11-0101.1.

    • Search Google Scholar
    • Export Citation
  • Inoue, E., 1963: On the turbulent structure of airflow within crop canopies. J. Meteor. Soc. Japan, 41, 317326.

  • Inoue, K., and Uchijima Z. , 1979: Experimental study of microstructure of wind turbulence in rice and maize canopies. Bull. Natl. Inst. Agric. Sci., Ser. A., 26, 188.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., and McNaughton K. , 1986: Stomatal control of transpiration: Scaling up from leaf to region. Adv. Ecol. Res., 15, 149, doi:10.1016/S0065-2504(08)60119-1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., Oren R. , Oishi A. C. , Hsieh C. , Phillips N. , Novick K. A. , and Stoy P. C. , 2014: Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agric. For. Meteor., 187, 6271, doi:10.1016/j.agrformet.2013.11.013.

    • Search Google Scholar
    • Export Citation
  • Leuning, R., 1995: A critical appraisal of a combined stomatal–photosynthesis model for C3 plants. Plant Cell Environ., 18, 339355, doi:10.1111/j.1365-3040.1995.tb00370.x.

    • Search Google Scholar
    • Export Citation
  • Leuning, R., Kelliher F. , Pury D. D. , and Schulze E. D. , 1995: Leaf nitrogen, photosynthesis, conductance and transpiration: Scaling from leaves to canopies. Plant Cell Environ., 18, 11831200, doi:10.1111/j.1365-3040.1995.tb00628.x.

    • Search Google Scholar
    • Export Citation
  • Martin, T. A., Hinckley T. M. , Meinzer F. C. , and Sprugel D. G. , 1999: Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches. Tree Physiol., 19, 435443, doi:10.1093/treephys/19.7.435.

    • Search Google Scholar
    • Export Citation
  • Meinzer, F. C., 1993: Stomatal control of transpiration. Trends Ecol. Evol., 8, 289294, doi:10.1016/0169-5347(93)90257-P.

  • Monteith, J., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205234.

  • Mott, K. A., and Peak D. , 2010: Stomatal responses to humidity and temperature in darkness. Plant Cell Environ., 33, 10841090, doi:10.1111/j.1365-3040.2010.02129.x.

    • Search Google Scholar
    • Export Citation
  • Nobel, P. S., 1999: Physicochemical and Environmental Plant Physiology. Academic Press, 474 pp.

  • Oleson, K., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., doi:10.5065/D6RR1W7M.

  • Pereira, A. R., and Shaw R. H. , 1980: A numerical experiment on the mean wind structure inside canopies of vegetation. Agric. Meteor., 22, 303318, doi:10.1016/0002-1571(80)90009-6.

    • Search Google Scholar
    • Export Citation
  • Saito, T., 1964: On the wind profile within plant communities. Bull. Natl. Inst. Agric. Sci., Ser. A, 11, 6774.

  • Sauer, T., Norman J. , Tanner C. , and Wilson T. , 1995: Measurement of heat and vapor transfer coefficients at the soil surface beneath a maize canopy using source plates. Agric. For. Meteor., 75, 161189, doi:10.1016/0168-1923(94)02209-3.

    • Search Google Scholar
    • Export Citation
  • Schuepp, P., 1993: Tansley review No. 59. Leaf boundary layers. New Phytol., 125, 477507, doi:10.1111/j.1469-8137.1993.tb03898.x.

  • Sellers, P., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676705, doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Souch, C., and Stephens W. , 1998: Growth, productivity and water use in three hybrid poplar clones. Tree Physiol., 18, 829835, doi:10.1093/treephys/18.12.829.

    • Search Google Scholar
    • Export Citation
  • Tague, C., and Band L. , 2004: RHESSys: Regional hydro-ecological simulation system: An object-oriented approach to spatially distributed modeling of carbon, water and nutrient cycling. Earth Interact., 8, doi:10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. J., Nuberg I. K. , and Hatton T. , 2001: Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation. Tree Physiol., 21, 403408, doi:10.1093/treephys/21.6.403.

    • Search Google Scholar
    • Export Citation
  • Trout, T. J., Johnson L. F. , and Gartung J. , 2008: Remote sensing of canopy cover in horticultural crops. HortScience, 43 (2), 333337.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-P., and Jarvis P. , 1990a: Description and validation of an array model—MAESTRO. Agric. For. Meteor., 51, 257280, doi:10.1016/0168-1923(90)90112-J.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-P., and Jarvis P. , 1990b: Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: Application of a model (MAESTRO). Tree Physiol., 7, 297316, doi:10.1093/treephys/7.1-2-3-4.297.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-P., and Leuning R. , 1998: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. I: Model description and comparison with a multi-layered model. Agric. For. Meteor., 91, 89111, doi:10.1016/S0168-1923(98)00061-6.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-P., Jarvis P. , and Benson M. , 1990: Two-dimensional needle-area density distribution within the crowns of Pinus radiata. For. Ecol. Manage., 32, 217237, doi:10.1016/0378-1127(90)90172-8.

    • Search Google Scholar
    • Export Citation
  • Weiss, M., Baret F. , Smith G. , Jonckheere I. , and Coppin P. , 2004: Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric. For. Meteor., 121, 3753, doi:10.1016/j.agrformet.2003.08.001.

    • Search Google Scholar
    • Export Citation
  • Westgate, M., Forcella F. , Reicosky D. , and Somsen J. , 1997: Rapid canopy closure for maize production in the northern US corn belt: Radiation-use efficiency and grain yield. Field Crops Res., 49, 249258, doi:10.1016/S0378-4290(96)01055-6.

    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., Vail L. , and Lettenmaier D. P. , 1994: A distributed hydrology–vegetation model for complex terrain. Water Resour. Res., 30, 16651679, doi:10.1029/94WR00436.

    • Search Google Scholar
    • Export Citation
  • Wright, J. L., 1965: Evaluating Turbulent Transfer Aero-Dynamically within the Microclimate of a Cornfield. Cornell University, 174 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 953 495 43
PDF Downloads 390 81 7