• Autorità di Bacino Interregionale del Fiume Magra, 2006: Piano stralcio assetto idrogeologico del bacino del Fiume Magra e del Torrente Parmignola (in Italian). Report, Relazione Generale, Sarzana, Italy, 209 pp. [Available online at http://www.adbmagra.it/html/PAI_DCI_180_06.htm.]

  • Blume, T., , Zehe E. , , and Bronstert A. , 2007: Rainfall–runoff response, event-based runoff coefficients and hydrograph separation. Hydrol. Sci. J., 52, 843862, doi:10.1623/hysj.52.5.843.

    • Search Google Scholar
    • Export Citation
  • Bodoque, J. M., , Eguibar M. A. , , Díez-Herrero A. , , Gutiérrez-Pérez I. , , and Ruiz-Villanueva V. , 2011: Can the discharge of a hyperconcentrated flow be estimated from paleoflood evidence? Water Resour. Res., 47, W12535, doi:10.1029/2011WR010380.

    • Search Google Scholar
    • Export Citation
  • Bodoque, J. M., , Díez-Herrero A. , , Eguibar M. A. , , Benito G. , , Ruiz-Villanueva V. , , and Ballesteros-Cánovas J. A. , 2015: Challenges in paleoflood hydrology applied to risk analysis in mountainous watersheds—A review. J. Hydrol., 529, 449467, doi:10.1016/j.jhydrol.2014.12.004.

    • Search Google Scholar
    • Export Citation
  • Borga, M., , Boscolo P. , , Zanon F. , , and Sangati M. , 2007: Hydrometeorological analysis of the 29 August 2003 flash flood in the eastern Italian Alps. J. Hydrometeor., 8, 10491067, doi:10.1175/JHM593.1.

    • Search Google Scholar
    • Export Citation
  • Borga, M., , Stoffel M. , , Marchi L. , , Marra F. , , and Jakob M. , 2014: Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris-flows. J. Hydrol., 518, 194205, doi:10.1016/j.jhydrol.2014.05.022.

    • Search Google Scholar
    • Export Citation
  • Church, M., , and Ferguson R. I. , 2015: Morphodynamics: Rivers beyond steady state. Water Resour. Res., 51, 18831897, doi:10.1002/2014WR016862.

    • Search Google Scholar
    • Export Citation
  • Comiti, F., , Cadol D. , , and Wohl E. , 2009: Flow regimes, bed morphology, and flow resistance in self-formed step–pool channels. Water Resour. Res., 45, W04424, doi:10.1029/2008WR007259.

    • Search Google Scholar
    • Export Citation
  • Costa, J. E., , and Jarrett R. D. , 1981: Debris flows in small mountain stream channels of Colorado and their hydrologic implications. Environ. Eng. Geosci., 18, 309322, doi:10.2113/gseegeosci.xviii.3.309.

    • Search Google Scholar
    • Export Citation
  • Dalrymple, T., , and Benson M. A. , 1967: Measurement of peak discharge by the slope–area method. U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A2, 12 pp. [Available online at https://pubs.usgs.gov/twri/twri3-a2/index.html.]

  • Di Baldassarre, G., , and Montanari A. , 2009: Uncertainty in river discharge observations: A quantitative analysis. Hydrol. Earth Syst. Sci., 13, 913921, doi:10.5194/hess-13-913-2009.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1983: Estimating the error rate of a prediction rule: Some improvements on cross-validation. J. Amer. Stat. Assoc., 78, 316331, doi:10.1080/01621459.1983.10477973.

    • Search Google Scholar
    • Export Citation
  • Ferguson, R., 2007: Flow resistance equations for gravel- and boulder-bed streams. Water Resour. Res., 43, W05427, doi:10.1029/2006WR005422.

    • Search Google Scholar
    • Export Citation
  • Gaume, E., , and Borga M. , 2008: Post-flood field investigations in upland catchments after major flash floods: Proposal of a methodology and illustrations. J. Flood Risk Manage., 1, 175189, doi:10.1111/j.1753-318X.2008.00023.x.

    • Search Google Scholar
    • Export Citation
  • Gaume, E., and et al. , 2009: A collation of data on European flash floods. J. Hydrol., 367, 7078, doi:10.1016/j.jhydrol.2008.12.028.

    • Search Google Scholar
    • Export Citation
  • Grant, G. E., 1997: Critical flow constrains flow hydraulics in mobile-bed streams: A new hypothesis. Water Resour. Res., 33, 349358, doi:10.1029/96WR03134.

    • Search Google Scholar
    • Export Citation
  • Grimaldi, S., , Petroselli A. , , and Romano N. , 2013: Green–Ampt Curve-Number mixed procedure as an empirical tool for rainfall–runoff modelling in small and ungauged basins. Hydrol. Processes, 27, 12531264, doi:10.1002/hyp.9303.

    • Search Google Scholar
    • Export Citation
  • Hawkins, R., 1993: Asymptotic determination of runoff curve numbers from data. J. Irrig. Drain. Eng., 119, 334345, doi:10.1061/(ASCE)0733-9437(1993)119:2(334).

    • Search Google Scholar
    • Export Citation
  • Hungr, O., , Morgan G. C. , , and Kellerhals R. , 1984: Quantitative analysis of debris torrent hazards for design of remedial measures. Can. Geotech. J., 21, 663677, doi:10.1139/t84-073.

    • Search Google Scholar
    • Export Citation
  • Hydrologic Engineering Center, 2016: HEC-RAS River Analysis System: User’s manual. U.S. Army Corps of Engineers, 960 pp. [Available online at http://www.hec.usace.army.mil/software/hec-ras/documentation.aspx.]

  • Jarrett, R. D., 1987: Errors in slope–area computations of peak discharges in mountain streams. J. Hydrol., 96, 5367, doi:10.1016/0022-1694(87)90143-0.

    • Search Google Scholar
    • Export Citation
  • Kirby, W. H., 1987: Linear error analysis of slope–area discharge determinations. J. Hydrol., 96, 125138, doi:10.1016/0022-1694(87)90148-X.

    • Search Google Scholar
    • Export Citation
  • Laganier, O., , Ayral P. A. , , Salze D. , , and Sauvagnargues S. , 2014: A coupling of hydrologic and hydraulic models appropriate for the fast floods of the Gardon River basin (France). Nat. Hazards Earth Syst. Sci., 14, 28992920, doi:10.5194/nhess-14-2899-2014.

    • Search Google Scholar
    • Export Citation
  • Lucía, A., , Comiti F. , , Borga M. , , Cavalli M. , , and Marchi L. , 2015: Dynamics of large wood during a flash flood in two mountain catchments. Nat. Hazards Earth Syst. Sci., 15, 17411755, doi:10.5194/nhess-15-1741-2015.

    • Search Google Scholar
    • Export Citation
  • Lumbroso, D., , and Gaume E. , 2012: Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J. Hydrol., 414–415, 1630, doi:10.1016/j.jhydrol.2011.08.048.

    • Search Google Scholar
    • Export Citation
  • Marchi, L., and et al. , 2009: Comprehensive post-event survey of a flash flood in western Slovenia: Observation strategy and lessons learned. Hydrol. Processes, 23, 37613770, doi:10.1002/hyp.7542.

    • Search Google Scholar
    • Export Citation
  • Marchi, L., , Borga M. , , Preciso E. , , and Gaume E. , 2010: Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol., 394, 118133, doi:10.1016/j.jhydrol.2010.07.017.

    • Search Google Scholar
    • Export Citation
  • Marchi, L., , Cavalli M. , , Amponsah W. , , Borga M. , , and Crema S. , 2016: Upper limits of flash flood stream power in Europe. Geomorphology, 272, 6877, doi:10.1016/j.geomorph.2015.11.005.

    • Search Google Scholar
    • Export Citation
  • Marra, F., , Nikolopoulos E. I. , , Creutin J. D. , , and Borga M. , 2014: Radar rainfall estimation for the identification of debris-flow occurrence thresholds. J. Hydrol., 519, 16071619, doi:10.1016/j.jhydrol.2014.09.039.

    • Search Google Scholar
    • Export Citation
  • Martens, B., , Cabus P. , , De Jongh I. , , and Verhoest N. E. C. , 2013: Merging weather radar observations with ground-based measurements of rainfall using an adaptive multiquadric surface fitting algorithm. J. Hydrol., 500, 8496, doi:10.1016/j.jhydrol.2013.07.011.

    • Search Google Scholar
    • Export Citation
  • McCuen, R. H., , and Knight Z. , 2006: Fuzzy analysis of slope–area discharge estimates. J. Irrig. Drain. Eng., 132, 6469, doi:10.1061/(ASCE)0733-9437(2006)132:1(64).

    • Search Google Scholar
    • Export Citation
  • Mondini, A. C., , Viero A. , , Cavalli M. , , Marchi L. , , Herrera G. , , and Guzzetti F. , 2014: Comparison of event landslide inventories: The Pogliaschina catchment test case, Italy. Nat. Hazards Earth Syst. Sci., 14, 17491759, doi:10.5194/nhess-14-1749-2014.

    • Search Google Scholar
    • Export Citation
  • Nardi, L., , and Rinaldi M. , 2015: Spatio-temporal patterns of channel changes in response to a major flood event: The case of the Magra River (central-northern Italy). Earth Surf. Processes Landforms, 40, 326339, doi:10.1002/esp.3636.

    • Search Google Scholar
    • Export Citation
  • Nash, I. E., , and Sutcliffe I. V. , 1970: River flow forecasting through conceptual models, part I. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Norbiato, D., , Borga M. , , Merz R. , , Blöschl G. , , and Carton A. , 2009: Controls on event runoff coefficients in the eastern Italian Alps. J. Hydrol., 375, 312325, doi:10.1016/j.jhydrol.2009.06.044.

    • Search Google Scholar
    • Export Citation
  • O’Connor, J. E., , Clague J. J. , , Walder J. S. , , Manville V. , , and Beebee R. A. , 2013: Outburst floods. Fluvial Geomorphology, Vol. 9, Treatise on Geomorphology, Elsevier, 475510, doi:10.1016/B978-0-12-374739-6.00251-7.

  • Pellarin, T., , Delrieu G. , , and Saulner G. M. , 2002: Hydrologic visibility of weather radar systems operating in mountainous regions: Case study for the Ardèche catchment (France). J. Hydrometeor., 3, 539555, doi:10.1175/1525-7541(2002)003<0539:HVOWRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierson, T. C., 2005: Hyperconcentrated flow—Transitional process between water flow and debris flow. Debris-Flow Hazards and Related Phenomena, J. Matthias and H. Oldrich, Eds., Springer/Praxis, 159–202, doi:10.1007/3-540-27129-5_8.

  • Ponce, V. M., , and Hawkins E. R. H. , 1996: Runoff curve number: Has it reached maturity? J. Hydrol. Eng., 1, 1119, doi:10.1061/(ASCE)1084-0699(1996)1:1(11).

    • Search Google Scholar
    • Export Citation
  • Prochaska, A. B., , Sant P. M. , , Higgins J. D. , , and Cannon S. H. , 2008: Debris-flow runout predictions based on the average channel slope (ACS). Eng. Geol., 98, 2940, doi:10.1016/j.enggeo.2008.01.011.

    • Search Google Scholar
    • Export Citation
  • Rebora, N., and et al. , 2013: Extreme rainfall in the Mediterranean: What can we learn from observations? J. Hydrometeor., 14, 906922, doi:10.1175/JHM-D-12-083.1.

    • Search Google Scholar
    • Export Citation
  • Rinaldi, M., and et al. , 2016: An integrated approach for investigating geomorphic response to an extreme flood event: The case of the Magra River, Italy. Earth Surf. Processes Landforms, 41, 835846, doi:10.1002/esp.3902.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Villanueva, V., , Borga M. , , Zoccatelli D. , , Marchi L. , , Gaume E. , , and Ehret U. , 2012: Extreme flood response to short-duration convective rainfall in south-west Germany. Hydrol. Earth Syst. Sci., 16, 15431559, doi:10.5194/hess-16-1543-2012.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Villanueva, V., , Bodoque J. M. , , Díez-Herrero A. , , Eguibar M. A. , , and Pardo-Igúzquiza E. , 2013: Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrol. Processes, 27, 34243437, doi:10.1002/hyp.9433.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. M., , Callegary J. B. , , Smith C. F. , , Gupta H. V. , , Leenhouts J. M. , , and Fritzinger R. A. , 2012: Use of the continuous slope–area method to estimate runoff in a network of ephemeral channels, southeast Arizona, USA. J. Hydrol., 472–473, 148158, doi:10.1016/j.jhydrol.2012.09.022.

    • Search Google Scholar
    • Export Citation
  • Surian, N., and et al. , 2016: Channel response to extreme floods: Insights on controlling factors from six mountain rivers in northern Apennines, Italy. Geomorphology, 272, 7891, doi:10.1016/j.geomorph.2016.02.002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 116 30
PDF Downloads 98 98 21

Hydrometeorological Characterization of a Flash Flood Associated with Major Geomorphic Effects: Assessment of Peak Discharge Uncertainties and Analysis of the Runoff Response

View More View Less
  • 1 Research Institute for Geo-hydrological Protection, National Research Council, Padua, Italy
  • | 2 Department of Land, Environment, Agriculture and Forestry, University of Padua, Agripolis, Legnaro, Italy
  • | 3 Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
  • | 4 Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
  • | 5 Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
  • | 6 Department of Geography, Hebrew University of Jerusalem, Jerusalem, Israel
© Get Permissions
Restricted access

Abstract

Postflood indirect peak flow estimates provide key information to advance understanding of flash flood hydrometeorological processes, particularly when peak observations are combined with flood simulations from a hydrological model. However, indirect peak flow estimates are affected by significant uncertainties, which are magnified when floods are associated with important geomorphic processes. The main objective of this work is to advance the integrated use of indirect peak flood estimates and hydrological model simulations by developing and testing a procedure for the assessment of the geomorphic impacts–related uncertainties. The methodology is applied to the analysis of an extreme flash flood that occurred on the Magra River system in Italy on 25 October 2011. The event produced major geomorphic effects and peak discharges close to the maxima observed for high-magnitude rainstorm events in Europe at basin scales ranging from 30 to 1000 km2. Results show that the intensity of geomorphic impacts has a significant effect on the accuracy of postflood peak discharge estimation and model-based flood response analysis. It is shown that the comparison between rainfall–runoff model simulations and indirect peak flow estimates, accounting for uncertainties, may be used to identify erroneous field-derived estimates and isolate consistent hydrological simulations. Comparison with peak discharges obtained for other Mediterranean flash floods allows the scale-dependent flood response of the Magra River system to be placed within a broader hydroclimatological context. Model analyses of the hydrologic response illustrate the role of storm structure and evolution for scale-dependent flood response.

Corresponding author e-mail: William Amponsah, william.amponsah@irpi.cnr.it

Abstract

Postflood indirect peak flow estimates provide key information to advance understanding of flash flood hydrometeorological processes, particularly when peak observations are combined with flood simulations from a hydrological model. However, indirect peak flow estimates are affected by significant uncertainties, which are magnified when floods are associated with important geomorphic processes. The main objective of this work is to advance the integrated use of indirect peak flood estimates and hydrological model simulations by developing and testing a procedure for the assessment of the geomorphic impacts–related uncertainties. The methodology is applied to the analysis of an extreme flash flood that occurred on the Magra River system in Italy on 25 October 2011. The event produced major geomorphic effects and peak discharges close to the maxima observed for high-magnitude rainstorm events in Europe at basin scales ranging from 30 to 1000 km2. Results show that the intensity of geomorphic impacts has a significant effect on the accuracy of postflood peak discharge estimation and model-based flood response analysis. It is shown that the comparison between rainfall–runoff model simulations and indirect peak flow estimates, accounting for uncertainties, may be used to identify erroneous field-derived estimates and isolate consistent hydrological simulations. Comparison with peak discharges obtained for other Mediterranean flash floods allows the scale-dependent flood response of the Magra River system to be placed within a broader hydroclimatological context. Model analyses of the hydrologic response illustrate the role of storm structure and evolution for scale-dependent flood response.

Corresponding author e-mail: William Amponsah, william.amponsah@irpi.cnr.it
Save