Large-Scale Influences on Summertime Extreme Precipitation in the Northeastern United States

Allison B. Marquardt Collow Universities Space Research Association, Columbia, and Goddard Earth Sciences Technology and Research, and Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Allison B. Marquardt Collow in
Current site
Google Scholar
PubMed
Close
,
Michael G. Bosilovich Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Michael G. Bosilovich in
Current site
Google Scholar
PubMed
Close
, and
Randal D. Koster Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Randal D. Koster in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations indicate that over the last few decades there has been a statistically significant increase in precipitation in the northeastern United States and that this can be attributed to an increase in precipitation associated with extreme precipitation events. Here a state-of-the-art atmospheric reanalysis is used to examine such events in detail. Daily extreme precipitation events defined at the 75th and 95th percentile from gridded gauge observations are identified for a selected region within the Northeast. Atmospheric variables from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are then composited during these events to illustrate the time evolution of associated synoptic structures, with a focus on vertically integrated water vapor fluxes, sea level pressure, and 500-hPa heights. Anomalies of these fields move into the region from the northwest, with stronger anomalies present in the 95th percentile case. Although previous studies show tropical cyclones are responsible for the most intense extreme precipitation events, only 10% of the events in this study are caused by tropical cyclones. On the other hand, extreme events resulting from cutoff low pressure systems have increased. The time period of the study was divided in half to determine how the mean composite has changed over time. An arc of lower sea level pressure along the East Coast and a change in the vertical profile of equivalent potential temperature suggest a possible increase in the frequency or intensity of synoptic-scale baroclinic disturbances.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0091.s1.

Corresponding author address: Allison B. Marquardt Collow, Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Code 610.1, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: allison.collow@nasa.gov

Abstract

Observations indicate that over the last few decades there has been a statistically significant increase in precipitation in the northeastern United States and that this can be attributed to an increase in precipitation associated with extreme precipitation events. Here a state-of-the-art atmospheric reanalysis is used to examine such events in detail. Daily extreme precipitation events defined at the 75th and 95th percentile from gridded gauge observations are identified for a selected region within the Northeast. Atmospheric variables from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are then composited during these events to illustrate the time evolution of associated synoptic structures, with a focus on vertically integrated water vapor fluxes, sea level pressure, and 500-hPa heights. Anomalies of these fields move into the region from the northwest, with stronger anomalies present in the 95th percentile case. Although previous studies show tropical cyclones are responsible for the most intense extreme precipitation events, only 10% of the events in this study are caused by tropical cyclones. On the other hand, extreme events resulting from cutoff low pressure systems have increased. The time period of the study was divided in half to determine how the mean composite has changed over time. An arc of lower sea level pressure along the East Coast and a change in the vertical profile of equivalent potential temperature suggest a possible increase in the frequency or intensity of synoptic-scale baroclinic disturbances.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0091.s1.

Corresponding author address: Allison B. Marquardt Collow, Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Code 610.1, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: allison.collow@nasa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 3.04 MB)
Save
  • Agel, L., Barlow M. , Qian J. H. , Colby F. , Douglas E. , and Eichler T. , 2015: Climatology of daily precipitation and extreme precipitation events in the Northeast United States. J. Hydrometeor., 16, 2537–2557, doi:10.1175/JHM-D-14-0147.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, doi:10.1029/2010GL046258.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., Dunn-Sigouin E. , Masato G. , and Woollings T. , 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638–644, doi:10.1002/2013GL058745.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.]

  • Catto, J. L., and Pfahl S. , 2013: The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos., 118, 10 791–10 801, doi:10.1002/jgrd.50852.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., Jakob C. , Berry G. , and Nicholls N. , 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, doi:10.1029/2012GL051736.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and Xie P. , 2008: CPC Unified Gauge-Based Analysis of Global Daily Precipitation. Western Pacific Geophysics Meeting, Cairns, Australia, Amer. Geophys. Union, Abstract A24A-05.

  • Coumou, D., Lehmann J. , and Beckmann J. , 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324–327, doi:10.1126/science.1261768.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., 2008: The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season. Climate Dyn., 30, 343–351, doi:10.1007/s00382-007-0295-0.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., Mestas-Nuñez A. M. , and Trimble P. J. , 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and Skific N. , 2015: Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. Roy. Soc. London, A373, 20140170, doi:10.1098/rsta.2014.0170.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and Vavrus S. J. , 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Frei, A., Kunkel K. E. , and Matonse A. , 2015: The seasonal nature of extreme hydrological events in the northeastern United States. J. Hydrometeor., 16, 2065–2085, doi:10.1175/JHM-D-14-0237.1.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Schlosser C. A. , Xie P. , Monier E. , and Entekhabi D. , 2014: An analogue approach to identify heavy precipitation events: Evaluation and application to CMIP5 climate models in the United States. J. Climate, 27, 5941–5963, doi:10.1175/JCLI-D-13-00598.1.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Faure G. , 2008: Composite predictor maps of extraordinary weather events in the Sacramento, California, region. Wea. Forecasting, 23, 313–335, doi:10.1175/2007WAF2006055.1.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., Cropper T. E. , Jones P. D. , Scaife A. A. , and Allan R. , 2015: Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index. Int. J. Climatol., 35, 2540–2554, doi:10.1002/joc.4157.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., Cropper T. E. , Hall R. J. , and Cappelen J. , 2016: Greenland Blocking Index 1851–2015: A regional climate change signal. Int. J. Climatol., doi:10.1002/joc.4673, in press.

    • Search Google Scholar
    • Export Citation
  • Hirata, F. E., and Grimm A. M. , 2016: The role of synoptic and intraseasonal anomalies in the life cycle of summer rainfall extremes over South America. Climate Dyn., 46, 3041–3055, doi:10.1007/s00382-015-2751-6.

    • Search Google Scholar
    • Export Citation
  • Horton, R., and Coauthors, 2014: Northeast. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 371–395, doi:10.7930/J0KW5CXT.

  • Hoskins, B. J., and Valdes P. J. , 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 1854–1864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Ivancic, T. J., and Shaw S. B. , 2016: A U.S.-based analysis of the ability of the Clausius–Clapeyron relationship to explain changes in extreme rainfall with changing temperature. J. Geophys. Res. Atmos., 121, 3066–3078, doi:10.1002/2015JD024288.

    • Search Google Scholar
    • Export Citation
  • Janssen, E., Wuebbles D. J. , Kunkel K. E. , Olsen S. C. , and Goodman A. , 2014: Observational- and model-based trends and projections of extreme precipitation over the contiguous United States. Earth’s Future, 2, 99–113, doi:10.1002/2013EF000185.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., Folland C. K. , and Scaife A. A. , 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2, 309–325, doi:10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Easterling D. R. , Kristovich D. A. R. , Gleason B. , Stoecker L. , and Smith R. , 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 1131–1141, doi:10.1175/JHM-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013: Regional climate trends and scenarios for the U.S. National Climate Assessment: Part 1. Climate of the Northeast U.S. NOAA Tech. Rep. NESDIS 142-1, 87 pp. [Available online at https://scenarios.globalchange.gov/sites/default/files/NOAA_NESDIS_Tech_Report_142-1-Climate_of_the_Northeast_U.S_1.pdf.]

  • McCarty, W., Coy L. , Gelaro R. , Huang A. , Merkova D. , Smith E. B. , Seinkiewicz M. , and Wargan K. , 2016: MERRA-2 input observations: Summary and assessment. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2016-104606, 61 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf.]

  • Melillo, J. M., Richmond T. C. , and Yohe G. W. , 2014: Our changing climate. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 19–67, doi:10.7930/J0KW5CXT.

  • Molod, A., Takacs L. , Suarez M. , and Bacmeister J. , 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 1339–1356, doi:10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Pook, M. J., McIntosh P. C. , and Meyers G. A. , 2006: The synoptic decomposition of cool-season rainfall in the southeastern Australian cropping region. J. Appl. Meteor. Climatol., 45, 1156–1170, doi:10.1175/JAM2394.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Liu Q. , 2014: Observation-corrected precipitation estimates in GEOS-5. NASA Tech. Memo. NASA/TM-2014-104606/Vol. 35, 24 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Reichle734.pdf.]

  • Rienecker, M. M., and Coauthors, 2011: MERRA, NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., McIntosh P. C. , and Pook M. J. , 2013: Synoptic components of rainfall variability and trends in southeast Australia. Int. J. Climatol., 33, 2459–2472, doi:10.1002/joc.3597.

    • Search Google Scholar
    • Export Citation
  • Rivera, E. R., Dominguez F. , and Castro C. L. , 2014: Atmospheric rivers and cool season extreme precipitation events in the Verde River basin of Arizona. J. Hydrometeor., 15, 813–829, doi:10.1175/JHM-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Stadtherr, L., Coumou D. , Petoukhov V. , Petri S. , and Rahmstorf S. , 2016: Record Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv., 2, e1501428, doi:10.1126/sciadv.1501428.

    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., Suárez M. J. , and Todling R. , 2016: Maintaining atmospheric mass and water balance in reanalyses. Quart. J. Roy. Meteor. Soc., 142, 1565–1573, doi:10.1002/qj.2763.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., Mass C. F. , and Salathé E. P. Jr., 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 2021–2043, doi:10.1175/MWR-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Westby, R. M., and Black R. X. , 2015: Development of anomalous temperature regimes over the southeastern United States: Synoptic behavior and role of low-frequency modes. Wea. Forecasting, 30, 553–570, doi:10.1175/WAF-D-14-00093.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., Yatagai A. , Chen M. , Hayasaka T. , Fukushima Y. , Liu C. , and Yang S. , 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607–626, doi:10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4079 2917 107
PDF Downloads 775 105 1