On the Controls of Daytime Precipitation in the Amazonian Dry Season

Virendra P. Ghate Argonne National Laboratory, Lemont, Illinois

Search for other papers by Virendra P. Ghate in
Current site
Google Scholar
PubMed
Close
and
Pavlos Kollias Brookhaven National Laboratory, Upton, and Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June–September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily a result of local land–atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. The control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0101.s1.

Corresponding author address: Virendra P. Ghate, Environmental Sciences, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439. E-mail: vghate@anl.gov

Abstract

The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June–September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily a result of local land–atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. The control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0101.s1.

Corresponding author address: Virendra P. Ghate, Environmental Sciences, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439. E-mail: vghate@anl.gov

Supplementary Materials

    • Supplemental Materials (DOCX 2.73 MB)
Save
  • Anber, U., Gentine P. , Wang S. , and Sobel A. H. , 2015: Fog and rain in the Amazon. Proc. Natl. Acad. Sci. USA, 112, 11 47311 477, doi:10.1073/pnas.1505077112.

    • Search Google Scholar
    • Export Citation
  • Aragao, L., Malhi Y. , Barbier N. , Lima A. , Shimabukuro Y. , Anderson L. , and Saatchi S. , 2008: Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. Roy. Soc. London, B363, 17791785, doi:10.1098/rstb.2007.0026.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Fuentes J. D. , Garstang M. , and Ball J. H. , 2002: Surface diurnal cycle and boundary layer structure over Rondônia during the rainy season. J. Geophys. Res., 107, 8065, doi:10.1029/2001JD000356.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burba, G., 2013: Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Biosciences, 331 pp.

  • Cook, B., Zeng N. , and Yoon J.-H. , 2012: Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interact., 16, doi:10.1175/2011EI398.1.

    • Search Google Scholar
    • Export Citation
  • de Gonçalves, L. G. G., and Coauthors, 2013: Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agric. Meteor., 182–183, 111127, doi:10.1016/j.agrformet.2013.04.030.

    • Search Google Scholar
    • Export Citation
  • de Oliveira, A. P., and Fitzjarrald D. R. , 1993: The Amazon River breeze and the local boundary layer: I. Observations. Bound.-Layer Meteor., 63, 141162, doi:10.1007/BF00705380.

    • Search Google Scholar
    • Export Citation
  • de Oliveira, A. P., and Fitzjarrald D. R. , 1994: The Amazon River breeze and the local boundary layer: II. Linear analysis and modelling. Bound.-Layer Meteor., 67, 7596, doi:10.1007/BF00705508.

    • Search Google Scholar
    • Export Citation
  • dos Santos, M. J., Silva Dias M. A. F. , and Freitas E. D. , 2014: Influence of local circulations on wind, moisture, and precipitation close to Manaus City, Amazon region, Brazil. J. Geophys. Res. Atmos., 119, 13 23313 249, doi:10.1002/2014JD021969.

    • Search Google Scholar
    • Export Citation
  • Drumond, A., Marengo J. , Ambrizzi T. , Nieto R. , Moreira L. , and Gimeno L. , 2014: The role of the Amazon basin moisture in the atmospheric branch of the hydrological cycle: A Lagrangian analysis. Hydrol. Earth Syst. Sci., 18, 25772598, doi:10.5194/hess-18-2577-2014.

    • Search Google Scholar
    • Export Citation
  • Fernandes, K., Giannini A. , Verchot L. , Baethgen W. , and Pinedo-Vasquez M. , 2015: Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations. Geophys. Res. Lett., 42, 67936801, doi:10.1002/2015GL063911.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., and Moore K. E. , 1990: Mechanisms of nocturnal exchange between the rain forest and the atmosphere. J. Geophys. Res., 95, 16 83916 850, doi:10.1029/JD095iD10p16839.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., Sakai R. K. , Moraes O. L. L. , de Oliveira R. C. , Acevedo O. C. , Czikowsky M. J. , and Beldini T. , 2008: Spatial and temporal rainfall variability near the Amazon–Tapajós confluence. J. Geophys. Res., 113, G00B11, doi:10.1029/2007JG000596.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Holtslag A. A. M. , D’Andrea F. , and Ek M. , 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Gloor, M., and Coauthors, 2012: The carbon balance of South America: A review of the status, decadal trends and main determinants. Biogeosciences, 9, 54075430, doi:10.5194/bg-9-5407-2012.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2003: The El Niño impact on the summer monsoon in Brazil: Regional processes versus remote influences. J. Climate, 16, 263280, doi:10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2004: How do La Niña events disturb the summer monsoon system in Brazil? Climate Dyn., 22, 123138, doi:10.1007/s00382-003-0368-7.

    • Search Google Scholar
    • Export Citation
  • Harper, A., Baker I. T. , Denning A. S. , Randall D. A. , Dazlich D. , and Branson M. , 2014: Impact of evapotranspiration on dry season climate in the Amazon forest. J. Climate, 27, 574591, doi:10.1175/JCLI-D-13-00074.1.

    • Search Google Scholar
    • Export Citation
  • Harriss, R. C., and Coauthors, 1988: The Amazon Boundary Layer Experiment (ABLE 2A): Dry season 1985. J. Geophys. Res., 93, 13511360, doi:10.1029/JD093iD02p01351.

    • Search Google Scholar
    • Export Citation
  • Joetzjer, E., Douville H. , Delire C. , and Ciais P. , 2013: Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Climate Dyn., 41, 29212936, doi:10.1007/s00382-012-1644-1.

    • Search Google Scholar
    • Export Citation
  • Juarez, R. I. N., Hodnett M. G. , Fu R. , Goulden M. , and von Randow C. , 2007: Control of dry season evapotranspiration over Amazonian forest as inferred from observations at a southern Amazon forest site. J. Climate, 20, 28272839, doi:10.1175/JCLI4184.1.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and Coauthors, 1998: Smoke, Clouds, and Radiation—Brazil (SCAR-B) experiment. J. Geophys. Res., 103, 31 78331 808, doi:10.1029/98JD02281.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Miller M. A. , Johnson K. L. , Jensen M. P. , and Troyan D. T. , 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. J. Geophys. Res., 114, D00E08, doi:10.1029/2008JD010641.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. L., Brando P. M. , Phillips O. L. , Van der Heijden G. M. , and Nepstad D. , 2011: The 2010 Amazon drought. Science, 331, 554, doi:10.1126/science.1200807.

    • Search Google Scholar
    • Export Citation
  • Li, W., and Fu R. , 2004: Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF Re-Analysis. J. Climate, 17, 26372651, doi:10.1175/1520-0442(2004)017<2637:TOTLAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Mechoso C. R. , 2011: The South American Monsoon System. The Global Monsoon System: Research and Forecast, 2nd ed., C.-P. Chang et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 5, World Scientific, 608 pp.

  • Luo, Z., and Rossow W. B. , 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563, doi:10.1175/3222.1.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., and Coauthors, 2009: Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA, 106, 20 61020 615, doi:10.1073/pnas.0804619106.

    • Search Google Scholar
    • Export Citation
  • Martin, C. L., Fitzjarrald D. , Garstang M. , Oliveira A. P. , Greco S. , and Browell E. , 1988: Structure and growth of the mixing layer over the Amazonian rain forest. J. Geophys. Res., 93, 13611375, doi:10.1029/JD093iD02p01361.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and Voyles J. W. , 2013: The ARM climate research facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Mehran, A., AghaKouchak A. , and Phillips T. J. , 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, doi:10.1002/2013JD021152.

    • Search Google Scholar
    • Export Citation
  • Misra, V., 2008: Coupled air, sea, and land interactions of the South American monsoon. J. Climate, 21, 63896403, doi:10.1175/2008JCLI2497.1.

    • Search Google Scholar
    • Export Citation
  • Pereira Filho, A. J., Silva Dias M. A. F. , Albrecht R. I. , Pereira L. G. P. , Gandu A. W. , Massambani O. , Tokay A. , and Rutledge S. , 2002: Multisensor analysis of a squall line in the Amazon region. J. Geophys. Res., 107, 8084, doi:10.1029/2000JD000305.

    • Search Google Scholar
    • Export Citation
  • Phillips, O., and Coauthors, 2009: Drought sensitivity of the Amazon rainforest. Science, 323, 13441347, doi:10.1126/science.1164033.

    • Search Google Scholar
    • Export Citation
  • Raia, A., and Cavalcanti I. F. A. , 2008: The life cycle of the South American monsoon system. J. Climate, 21, 62276246, doi:10.1175/2008JCLI2249.1.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132, 12011219, doi:10.1175/1520-0493(2004)132<1201:NCSATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saatchi, S., and Coauthors, 2011: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA, 108, 98999904, doi:10.1073/pnas.1019576108.

    • Search Google Scholar
    • Export Citation
  • Saatchi, S., Asefi-Najafabady S. , Malhi U. , Aragão L. E. O. C. , Anderson L. O. , Myneni R. B. , and Nemani R. , 2013: Persistent effects of severe drought on Amazonian forest canopy. Proc. Natl. Acad. Sci. USA, 110, 565570, doi:10.1073/pnas.1204651110.

    • Search Google Scholar
    • Export Citation
  • Satyamurty, P., da Costa C. P. W. , and Manzi A. O. , 2013: Moisture source for the Amazon basin: A study of contrasting years. Theor. Appl. Climatol., 111, 195209, doi:10.1007/s00704-012-0637-7.

    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., Neelin J. D. , Adams D. K. , and Lintner B. R. , 2016: Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. J. Atmos. Sci., 73, 40434063, doi:10.1175/JAS-D-16-0119.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., Roca R. , Weckwerth T. M. , and Andronova N. G. , 2010: Tropospheric water vapor, convection, and climate. Rev. Geophys., 48, RG2001, doi:10.1029/2009RG000301.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and Coauthors, 2002a: A case study of convective organization into precipitating lines in the southwest Amazon during the WETAMC and TRMM-LBA. J. Geophys. Res., 107, 8078, doi:10.1029/2001JD000375.

    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., Arnold S. R. , and Taylor C. M. , 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, doi:10.1038/nature11390.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tanaka, L. M. S., Satyamurty P. , and Machado L. A. T. , 2014: Diurnal variations of precipitation in central Amazon basin. Int. J. Climatol., 34, 35743584, doi:10.1002/joc.3929.

    • Search Google Scholar
    • Export Citation
  • Toomey, M., Roberts D. A. , Still C. , Goulden M. L. , and McFadden J. P. , 2011: Remotely sensed heat anomalies linked with Amazonian forest biomass declines. Geophys. Res. Lett., 38, L19704, doi:10.1029/2011GL049041.

    • Search Google Scholar
    • Export Citation
  • Werth, D., and Avissar R. , 2002: The local and global effects of Amazon deforestation. J. Geophys. Res., 107, 8087, doi:10.1029/2001JD000717.

    • Search Google Scholar
    • Export Citation
  • Wohlfahrt, G., and Widmoser P. , 2013: Can an energy balance model provide additional constraints on how to close the energy imbalance? Agric. For. Meteor., 169, 8591, doi:10.1016/j.agrformet.2012.10.006.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., 2016: Multi-model analysis of the Atlantic influence on southern Amazon rainfall. Atmos. Sci. Lett., 17, 122127, doi:10.1002/asl.600.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Klein S. A. , 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959, doi:10.1175/2010JAS3366.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Klein S. A. , 2013: Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: Investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site. J. Atmos. Sci., 70, 12971315, doi:10.1175/JAS-D-12-0131.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 920 553 67
PDF Downloads 430 89 15