• Bao, J. W., , Michelson S. A. , , Neiman P. J. , , Ralph F. M. , , and Wilczak J. M. , 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., and et al. , 2016: Reference upper-air observations for climate: From concept to reality. Bull. Amer. Meteor. Soc., 97, 123125, doi:10.1175/BAMS-D-14-00072.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., , and Prospero J. M. , 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, doi:10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and et al. , 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, doi:10.1175/BAMS-87-7-911.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., , Clark P. A. , , Martinez-Alvarado O. , , Stringer M. A. , , and Lavers D. A. , 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, doi:10.1175/BAMS-D-14-00031.1.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., , and Sherwood S. C. , 2009: A matter of humidity. Science, 323, 10201021, doi:10.1126/science.1171264.

  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, doi:10.1175/JHM-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , Ralph F. M. , , and Lavers D. , 2015: Setting the stage for a global science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 96, doi:10.1029/2015EO038675.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., , and Velden C. S. , 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353385, doi:10.1175/BAMS-85-3-353.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., , Dunion J. , , Foley J. A. , , Heidinger A. K. , , and Velden C. S. , 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33, L19813, doi:10.1029/2006GL026408.

    • Search Google Scholar
    • Export Citation
  • Gambacorta, A., 2013: The NOAA Unique CrIS/ATMS Processing System (NUCAPS). Algorithm Theoretical Basis Doc, version 1.0, NOAA, 73 pp. [Available online at http://www.ospo.noaa.gov/Products/atmosphere/soundings/nucaps/docs/NUCAPS_ATBD_20130821.pdf.]

  • Gambacorta, A., and et al. , 2012: The NOAA Unique CrIS/ATMS Processing System (NUCAPS): First light retrieval results. Proc. ITSC-XVIII, Toulouse, France, International TOVS Working Group, 9 pp. [Available online at https://cimss.ssec.wisc.edu/itwg/itsc/itsc18/program/files/links/1.03_Gambacorta_pa.pdf.]

  • Goldberg, M. D., , Kilcoyne H. , , Cikanek H. , , and Mehta A. , 2013: Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. J. Geophys. Res. Atmos., 118, 13 46313 475, doi:10.1002/2013JD020389.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., , and Pierce H. F. , 2002: Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 130, 31003128, doi:10.1175/1520-0493(2002)130<3100:SSIOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., , Vömel H. , , Whiteman D. N. , , and Leblanc T. , 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, doi:10.1029/2008JD011565.

    • Search Google Scholar
    • Export Citation
  • Morris, V., and et al. , 2006: Measuring trans-Atlantic aerosol transport from Africa. Eos, Trans. Amer. Geophys. Union, 87, 565571, doi:10.1029/2006EO500001.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and et al. , 2005: Profile observations of the Saharan air layer during AEROSE 2004. Geophys. Res. Lett., 32, L05815, doi:10.1029/2004GL022028.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and et al. , 2006: Ship-based measurements for infrared sensor validation during Aerosol and Ocean Science Expedition 2004. J. Geophys. Res., 111, D09S04, doi:10.1029/2005JD006385.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and et al. , 2011: Multi-year observations of the tropical Atlantic atmosphere: Multidisciplinary applications of the NOAA Aerosols and Ocean Science Expeditions (AEROSE). Bull. Amer. Meteor. Soc., 92, 765789, doi:10.1175/2011BAMS2997.1.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and et al. , 2013: Validation of satellite sounder environmental data records: Application to the Cross-track Infrared Microwave Sounder Suite. J. Geophys. Res. Atmos., 118, 13 62813 643, doi:10.1002/2013JD020436.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and et al. , 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, doi:10.1175/BAMS-D-14-00043.1.

    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., , Nieto R. , , Tomé R. , , Gimeno L. , , Trigo R. M. , , Liberato M. L. R. , , and Lavers D. A. , 2016: Atmospheric rivers moisture sources from a Lagrangian perspective. Earth Syst. Dyn., 7, 371384, doi:10.5194/esd-7-371-2016.

    • Search Google Scholar
    • Export Citation
  • Reale, T., , Sun B. , , Tilley F. H. , , and Pettey M. , 2012: The NOAA Products Validation System. J. Atmos. Oceanic Technol., 29, 629645, doi:10.1175/JTECH-D-11-00072.1.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Fu Q. , , Randel W. J. , , and Reichler T. J. , 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Shu, S., , and Wu L. , 2009: Analysis of the influence of Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett., 36, L09809, doi:10.1029/2009GL037634.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., , Barnet C. D. , , and Blaisdell J. M. , 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409, doi:10.1109/TGRS.2002.808236.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., , Blaisdell J. , , Iredell L. , , and Keita F. , 2011: Improved temperature sounding and quality control methodology using AIRS/AMSU data: The AIRS Science Team version 5 retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 49, 883907, doi:10.1109/TGRS.2010.2070508.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., 2015: A tale of two California droughts: Lessons amidst record warmth and dryness in a region of complex physical and human geography. Geophys. Res. Lett., 42, 999910 003, doi:10.1002/2015GL066628.

    • Search Google Scholar
    • Export Citation
  • Tsamalis, C., , Chédin A. , , Pelon J. , , and Capelle V. , 2013: The seasonal vertical distribution of the Saharan air layer and its modulation by the wind. Atmos. Chem. Phys., 13, 11 23511 257, doi:10.5194/acp-13-11235-2013.

    • Search Google Scholar
    • Export Citation
  • Wong, S., , and Dessler A. E. , 2005: Suppression of deep convection over the tropical North Atlantic by the Saharan air layer. Geophys. Res. Lett., 32, L09808, doi:10.1029/2004GL022295.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 14
PDF Downloads 19 19 3

Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

View More View Less
  • 1 I.M. Systems Group, Inc., Rockville, Maryland
  • | 2 Science and Technology Corporation, Columbia, Maryland
  • | 3 NOAA/NESDIS Center for Satellite Applications and Research, College Park, Maryland
  • | 4 Howard University, Washington, D.C.
  • | 5 Science and Technology Corporation, NOAA Earth System Research Laboratory, Boulder, Colorado
  • | 6 University at Albany, State University of New York, Albany, New York
  • | 7 Pacific Northwest National Laboratory, Richland, Washington
  • | 8 Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This paper examines the performance of satellite sounder atmospheric vertical moisture profiles under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs), tropical Hadley cells, and Pacific Ocean atmospheric rivers (ARs). Operational satellite sounder moisture profile retrievals from the Suomi National Polar-Orbiting Partnership (SNPP) NOAA Unique Combined Atmospheric Processing System (NUCAPS) are empirically assessed using collocated dedicated radiosonde observations (raobs) obtained from ocean-based intensive field campaigns. The raobs from these campaigns provide uniquely independent correlative truth data not assimilated into numerical weather prediction (NWP) models for satellite sounder validation over oceans. Although ocean cases are often considered “easy” by the satellite remote sensing community, these hydrometeorological phenomena present challenges to passive sounders, including vertical gradient discontinuities (e.g., strong inversions), as well as persistent uniform clouds, aerosols, and precipitation. It is found that the operational satellite sounder 100-layer moisture profile NUCAPS product performs close to global uncertainty requirements in the SAL/Hadley cell environment, with biases relative to raob within 10% up to 350 hPa. In the more difficult AR environment, bias relative to raob is found to be within 20% up to 400 hPa. In both environments, the sounder moisture retrievals are comparable to NWP model outputs, and cross-sectional analyses show the capability of the satellite sounder for detecting and resolving these tropospheric moisture features, thereby demonstrating a near-real-time forecast utility over these otherwise raob-sparse regions.

Corresponding author e-mail: Nicholas R. Nalli, nick.nalli@noaa.gov

Abstract

This paper examines the performance of satellite sounder atmospheric vertical moisture profiles under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs), tropical Hadley cells, and Pacific Ocean atmospheric rivers (ARs). Operational satellite sounder moisture profile retrievals from the Suomi National Polar-Orbiting Partnership (SNPP) NOAA Unique Combined Atmospheric Processing System (NUCAPS) are empirically assessed using collocated dedicated radiosonde observations (raobs) obtained from ocean-based intensive field campaigns. The raobs from these campaigns provide uniquely independent correlative truth data not assimilated into numerical weather prediction (NWP) models for satellite sounder validation over oceans. Although ocean cases are often considered “easy” by the satellite remote sensing community, these hydrometeorological phenomena present challenges to passive sounders, including vertical gradient discontinuities (e.g., strong inversions), as well as persistent uniform clouds, aerosols, and precipitation. It is found that the operational satellite sounder 100-layer moisture profile NUCAPS product performs close to global uncertainty requirements in the SAL/Hadley cell environment, with biases relative to raob within 10% up to 350 hPa. In the more difficult AR environment, bias relative to raob is found to be within 20% up to 400 hPa. In both environments, the sounder moisture retrievals are comparable to NWP model outputs, and cross-sectional analyses show the capability of the satellite sounder for detecting and resolving these tropospheric moisture features, thereby demonstrating a near-real-time forecast utility over these otherwise raob-sparse regions.

Corresponding author e-mail: Nicholas R. Nalli, nick.nalli@noaa.gov
Save