Effects of Land Surface Schemes on WRF-Simulated Geopotential Heights over China in Summer 2003

Xin-Min Zeng College of Meteorology and Oceanography, PLA University of Science and Technology, and Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Xin-Min Zeng in
Current site
Google Scholar
PubMed
Close
,
B. Wang College of Meteorology and Oceanography, PLA University of Science and Technology, and Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by B. Wang in
Current site
Google Scholar
PubMed
Close
,
Y. Zhang Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Y. Zhang in
Current site
Google Scholar
PubMed
Close
,
Y. Zheng Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Y. Zheng in
Current site
Google Scholar
PubMed
Close
,
N. Wang Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by N. Wang in
Current site
Google Scholar
PubMed
Close
,
M. Wang Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by M. Wang in
Current site
Google Scholar
PubMed
Close
,
X. Yi Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by X. Yi in
Current site
Google Scholar
PubMed
Close
,
C. Chen Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by C. Chen in
Current site
Google Scholar
PubMed
Close
,
Z. Zhou Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Z. Zhou in
Current site
Google Scholar
PubMed
Close
, and
H. Liu College of Meteorology and Oceanography, PLA University of Science and Technology, and Key Laboratory for Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by H. Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To quantify and explain effects of different land surface schemes (LSSs) on simulated geopotential height (GPH) fields, we performed simulations over China for the summer of 2003 using 12-member ensembles with the Weather Research and Forecasting (WRF) Model, version 3. The results show that while the model can generally simulate the seasonal and monthly mean GPH patterns, the effects of the LSS choice on simulated GPH fields are substantial, with the LSS-induced differences exceeding 10 gpm over a large area (especially the northwest) of China, which is very large compared with climate anomalies and forecast errors. In terms of the assessment measures for the four LSS ensembles [namely, the five-layer thermal diffusion scheme (SLAB), the Noah LSS (NOAH), the Rapid Update Cycle LSS (RUC), and the Pleim–Xiu LSS (PLEX)] in the WRF, the PLEX ensemble is the best, followed by the NOAH, RUC, and SLAB ensembles. The sensitivity of the simulated 850-hPa GPH is more significant than that of the 500-hPa GPH, with the 500-hPa GPH difference fields generally characterized by two large areas with opposite signs due to the smoothly varying nature of GPHs. LSS-induced GPH sensitivity is found to be higher than the GPH sensitivity induced by atmospheric boundary layer schemes. Moreover, theoretical analyses show that the LSS-induced GPH sensitivity is mainly caused by changes in surface fluxes (in particular, sensible heat flux), which further modify atmospheric temperature and pressure fields. The temperature and pressure fields generally have opposite contributions to changes in the GPH. This study emphasizes the importance of choosing and improving LSSs for simulating seasonal and monthly GPHs using regional climate models.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0239.s1.

Corresponding author address: Dr. Xin-Min Zeng, College of Meteorology and Oceanography, PLA University of Science and Technology, 60 Shuanglong Street, Zhonghuamenwai, Nanjing 211101, Jiangsu, China. E-mail: zen_xm@yahoo.com

Abstract

To quantify and explain effects of different land surface schemes (LSSs) on simulated geopotential height (GPH) fields, we performed simulations over China for the summer of 2003 using 12-member ensembles with the Weather Research and Forecasting (WRF) Model, version 3. The results show that while the model can generally simulate the seasonal and monthly mean GPH patterns, the effects of the LSS choice on simulated GPH fields are substantial, with the LSS-induced differences exceeding 10 gpm over a large area (especially the northwest) of China, which is very large compared with climate anomalies and forecast errors. In terms of the assessment measures for the four LSS ensembles [namely, the five-layer thermal diffusion scheme (SLAB), the Noah LSS (NOAH), the Rapid Update Cycle LSS (RUC), and the Pleim–Xiu LSS (PLEX)] in the WRF, the PLEX ensemble is the best, followed by the NOAH, RUC, and SLAB ensembles. The sensitivity of the simulated 850-hPa GPH is more significant than that of the 500-hPa GPH, with the 500-hPa GPH difference fields generally characterized by two large areas with opposite signs due to the smoothly varying nature of GPHs. LSS-induced GPH sensitivity is found to be higher than the GPH sensitivity induced by atmospheric boundary layer schemes. Moreover, theoretical analyses show that the LSS-induced GPH sensitivity is mainly caused by changes in surface fluxes (in particular, sensible heat flux), which further modify atmospheric temperature and pressure fields. The temperature and pressure fields generally have opposite contributions to changes in the GPH. This study emphasizes the importance of choosing and improving LSSs for simulating seasonal and monthly GPHs using regional climate models.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0239.s1.

Corresponding author address: Dr. Xin-Min Zeng, College of Meteorology and Oceanography, PLA University of Science and Technology, 60 Shuanglong Street, Zhonghuamenwai, Nanjing 211101, Jiangsu, China. E-mail: zen_xm@yahoo.com

Supplementary Materials

    • Supplemental Materials (DOC 12.57 MB)
Save
  • Akkermans, T., Thiery W. , and Van Lipzig N. P. M. , 2014: The regional climate impact of a realistic future deforestation scenario in the Congo basin. J. Climate, 27, 27142734, doi:10.1175/JCLI-D-13-00361.1.

    • Search Google Scholar
    • Export Citation
  • Argüeso, D., Hidalgo-Muñoz J. M. , Gámiz-Fortis S. R. , Esteban-Parra M. J. , Dudhia J. , and Castro-Díez Y. , 2011: Evaluation of WRF parameterizations for climate studies over southern Spain using a multistep regionalization. J. Climate, 24, 56335651, doi:10.1175/JCLI-D-11-00073.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modelling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Xie Z. , 2012: Effects of crop growth and development on regional climate: A case study over East Asian monsoon area. Climate Dyn., 38, 22912305, doi:10.1007/s00382-011-1125-y.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Zhou T. , Neale R. B. , Wu X. , and Zhang G. J. , 2010: Performance of the New NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23, 36573675, doi:10.1175/2010JCLI3022.1.

    • Search Google Scholar
    • Export Citation
  • Chessa, P. A., and Lalaurette F. , 2001: Verification of the ECMWF Ensemble Prediction System forecasts: A study of large-scale patterns. Wea. Forecasting, 16, 611619, doi:10.1175/1520-0434(2001)016<0611:VOTEEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crétat, J., Pohl B. , Richard Y. , and Drobinski P. , 2012: Uncertainties in simulating regional climate of southern Africa: Sensitivity to physical parameterizations using WRF. Climate Dyn., 38, 613634, doi:10.1007/s00382-011-1055-8.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R., Errico R. , Giorgi F. , and Bates G. , 1989: A regional climate model for the western United States. Climatic Change, 15, 383422, doi:10.1007/BF00240465.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and Chan J. C. L. , 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, NCAR, 49–50. [Available online at https://www.researchgate.net/publication/259865197_A_Multi-layer_Soil_Temperature_Model_for_MM5.]

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., Knutson T. R. , and Milly P. C. D. , 2006: Weak simulated extratropical responses to complete tropical deforestation. J. Climate, 19, 28352850, doi:10.1175/JCLI3737.1.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., Bastin S. , and Janicot S. , 2011: Regional climate modelling of the 2006 West African monsoon: Sensitivity to convection and planetary boundary layer parameterization using WRF. Climate Dyn., 36, 10831105, doi:10.1007/s00382-010-0785-3.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1993: Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments—A review. J. Climate, 6, 419448, doi:10.1175/1520-0442(1993)006<0419:SOCSTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 1991: Sensitivity of simulated summertime precipitation over the western United States to different physics parameterizations. Mon. Wea. Rev., 119, 28702888, doi:10.1175/1520-0493(1991)119<2870:SOSSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Marinucci M. R. , 1991: Validation of a regional atmospheric model over Europe: Sensitivity of wintertime and summertime simulations to selected physics parameterizations and lower boundary conditions. Quart. J. Roy. Meteor. Soc., 117, 11711207, doi:10.1002/qj.49711750204.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Mearns L. O. , 1999: Introduction to special section: Regional climate modelling revisited. J. Geophys. Res., 104, 63356352, doi:10.1029/98JD02072.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Marinucci M. R. , and Bates G. T. , 1993: Development of a second-generation Regional Climate Model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 27942813, doi:10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Shuttleworth W. J. , and Yang Z. L. , 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130, 12821298, doi:10.1175/1520-0493(2002)130<1282:SOTMNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., Dirmeyer P. A. , and DelSole T. , 2011: Land surface impacts on subseasonal and seasonal predictability. Geophys. Res. Lett., 38, L24812, doi:10.1029/2011GL049945.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and Ignatov A. , 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, doi:10.1080/014311698215333.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and Lim J.-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S. Y., Dudhia J. , and Chen S. H. , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NOAA/NWS/NCEP Office Note 437, NOAA Science Center, 66 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jerez, S., Montavez J. P. , Gomez-Navarro J. J. , Jimenez P. A. , Jimenez-Guerrero P. , Lorente R. , and Gonzalez-Rouco J. F. , 2012: The role of the land-surface model for climate change projections over the Iberian Peninsula. J. Geophys. Res., 117, D01109, doi:10.1029/2011JD016576.

    • Search Google Scholar
    • Export Citation
  • Jerez, S., Montavez J. P. , Jimenez-Guerrero P. , Gomez-Navarro J. J. , Lorente-Plazas R. , and Zorita E. , 2013: A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Climate Dyn., 40, 30233046, doi:10.1007/s00382-012-1539-1.

    • Search Google Scholar
    • Export Citation
  • Jiang, L., and Coauthors, 2010: Real-time weekly global green vegetation fraction derived from advanced very high resolution radiometer-based NOAA operational global vegetation index (GVI) system. J. Geophys. Res., 115, D11114, doi:10.1029/2009JD013204.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4, 335342, doi:10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002: NCEP Dynamical Seasonal Forecast System 2000. Bull. Amer. Meteor. Soc., 83, 10191037, doi:10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381141, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and Yang S. , 1997: Climatology and interannual variability of the Southeast Asian monsoon. Adv. Atmos. Sci., 14, 141162, doi:10.1007/s00376-997-0016-y.

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., Montani A. , and Paccagnella T. , 2014: Perturbation of initial and boundary conditions for a limited-area ensemble: Multi-model versus single-model approach. Quart. J. Roy. Meteor. Soc., 140, 197208, doi:10.1002/qj.2128.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Meng, X. H., Evans J. P. , and McCabe M. F. , 2014: The influence of inter-annually varying albedo on regional climate and drought. Climate Dyn., 42, 787803, doi:10.1007/s00382-013-1790-0.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and Coauthors, 2013: El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Climate Change, 4, 122126, doi:10.1038/nclimate2068.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184185, doi:10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and Roads J. O. , 2004: Time–space distribution of long-range atmospheric predictability. J. Atmos. Sci., 61, 249263, doi:10.1175/1520-0469(2004)061<0249:TDOLAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Seneviratne, S. I., Lüthi D. , Litschi M. , and Schär C. , 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, doi:10.1038/nature05095.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., Higuchi K. , and Knox J. L. , 1990: Regional analysis of Northern Hemisphere 50 kPa geopotential heights from 1946 to 1985. J. Climate, 3, 543557, doi:10.1175/1520-0442(1990)003<0543:RAONHK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Mintz Y. , 1982: Influence of the land-surface evapotransporation on the earth’s climate. Science, 215, 14981501, doi:10.1126/science.215.4539.1498.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 125 pp., doi:10.5065/D68S4MVH.

  • Smirnova, T. G., Brown J. M. , and Benjamin S. G. , 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 18701884, doi:10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., Brown J. M. , Benjamin S. G. , and Kim D. , 2000: Parameterization of cold-season processes in the MAPS land surface scheme. J. Geophys. Res., 105, 40774086, doi:10.1029/1999JD901047.

    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and Pessacg N. L. , 2012: Regional climate simulations over South America: Sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model. Climate Dyn., 38, 281300, doi:10.1007/s00382-011-1049-6.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., Galperin B. , and Perov V. , 2006: A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Processes Geophys., 13, 922, doi:10.5194/npg-13-9-2006.

    • Search Google Scholar
    • Export Citation
  • Walther, A., Jeong J. H. , Nikulin G. , Jones C. , and Chen D. , 2013: Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3. Atmos. Res., 119, 131139, doi:10.1016/j.atmosres.2011.10.012.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Lin H. , 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386–396, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

  • Wang, Y., Leung L. R. , McGregor J. L. , Lee D. K. , Wang W. C. , Ding Y. H. , and Kimura F. , 2004: Regional climate modelling: Progress, challenges and prospects. J. Meteor. Soc. Japan, 82, 15991628, doi:10.2151/jmsj.82.1599.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and Wang B. , 2001: Multi-stage onset of the summer monsoon over the western North Pacific. Climate Dyn., 17, 277289, doi:10.1007/s003820000118.

    • Search Google Scholar
    • Export Citation
  • Xiu, A., and Pleim J. E. , 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192209, doi:10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., Wei L. , Tuyl A. V. , and Barker E. H. , 2001: Estimation of three-dimensional error covariances. Part I: Analysis of height innovation vectors. Mon. Wea. Rev., 129, 21262135, doi:10.1175/1520-0493(2001)129<2126:EOTDEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., 1997: Biosphere feedback on regional climate in tropical North Africa. Quart. J. Roy. Meteor. Soc., 123, 14831515, doi:10.1002/qj.49712354203.

    • Search Google Scholar
    • Export Citation
  • Yang, T., Li H. , Wang W. , Xu C. Y. , and Yu Z. , 2012: Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrol. Processes, 26, 35103523, doi:10.1002/hyp.8427.

    • Search Google Scholar
    • Export Citation
  • Zeng, X.-M., Zhao M. , Su B. K. , Tang J. P. , Zheng Y. Q. , Zhang Y. J. , and Chen J. , 2003: Effects of the land-surface heterogeneities in temperature and moisture from the “combined approach” on regional climate: A sensitivity study. Global Planet. Change, 37, 247263, doi:10.1016/S0921-8181(02)00209-6.

    • Search Google Scholar
    • Export Citation
  • Zeng, X.-M., Wu Z. H. , Song S. , Xiong S. Y. , Zheng Y. Q. , Zhou Z. G. , and Liu H. Q. , 2012: Effects of different land surface schemes on the simulation of a heavy rainfall event by WRF. Chin. J. Geophys., 55, 394408, doi:10.1002/cjg2.1734.

    • Search Google Scholar
    • Export Citation
  • Zeng, X.-M., Wang B. , Zhang Y. , Song S. , Huang X. , Zheng Y. , Chen C. , and Wang G. , 2014: Sensitivity of high-temperature weather to initial soil moisture: A case study using the WRF Model. Atmos. Chem. Phys., 14, 96239639, doi:10.5194/acp-14-9623-2014.

    • Search Google Scholar
    • Export Citation
  • Zeng, X.-M., Wang N. , Wang Y. , Zheng Y. , Zhou Z. , Wang G. , Chen C. , and Liu H. , 2015: WRF simulated sensitivity to land surface schemes in short and medium ranges for a high-temperature event in east China: A comparative study. J. Adv. Model. Earth Syst., 7, 1305–1325, doi:10.1002/2015MS000440.

  • Zhang, W.-J., Zhou T.-J. , and Yu R.-C. , 2008: Spatial distribution and temporal variation of soil moisture over China. Part I: Multi-data intercomparison. Chin. J. Atmos. Sci., 32, 581597.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Chan J. C. L. , and Ding Y. , 2004: Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. Int. J. Climatol., 24, 14611482, doi:10.1002/joc.1082.

    • Search Google Scholar
    • Export Citation
  • Zheng, W., Wei H. , Wang Z. , Zeng X. , Meng J. , Ek M. , Mitchell K. , and Derber J. , 2012: Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res., 117, D06117, doi:10.1029/2011JD015901.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., and Frederiksen C. S. , 2007: Statistical prediction of seasonal mean Southern Hemisphere 500-hPa geopotential heights. J. Climate, 20, 27912809, doi:10.1175/JCLI4180.1.

    • Search Google Scholar
    • Export Citation
  • Zhuang, Z., Xue J. , Zhuang S. , and Zhu G. , 2006: A study of the statistical analysis of the geopotential height background errors in the data assimilation (in Chinese with English abstract). Chin. J. Atmos. Sci., 30, 533544.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 284 94 5
PDF Downloads 273 53 3