Development and Evaluation of High-Resolution Climate Simulations over the Mountainous Northeastern United States

Jonathan M. Winter Department of Geography, and Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire

Search for other papers by Jonathan M. Winter in
Current site
Google Scholar
PubMed
Close
,
Brian Beckage Department of Plant Biology, University of Vermont, Burlington, Vermont

Search for other papers by Brian Beckage in
Current site
Google Scholar
PubMed
Close
,
Gabriela Bucini Department of Plant Biology, University of Vermont, Burlington, Vermont

Search for other papers by Gabriela Bucini in
Current site
Google Scholar
PubMed
Close
,
Radley M. Horton Columbia University, NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Radley M. Horton in
Current site
Google Scholar
PubMed
Close
, and
Patrick J. Clemins Department of Computer Science, University of Vermont, Burlington, Vermont

Search for other papers by Patrick J. Clemins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly ~⅛°) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30″), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (⅛°) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

Corresponding author address: Jonathan M. Winter, Department of Geography, Department of Earth Sciences, Dartmouth College, 6017 Fairchild Hall, Hanover, NH 03755. E-mail: jwinter@dartmouth.edu

Abstract

The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly ~⅛°) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30″), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (⅛°) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

Corresponding author address: Jonathan M. Winter, Department of Geography, Department of Earth Sciences, Dartmouth College, 6017 Fairchild Hall, Hanover, NH 03755. E-mail: jwinter@dartmouth.edu
Save
  • Abatzoglou, J. T., and Brown T. J. , 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, doi:10.1002/joc.2312.

    • Search Google Scholar
    • Export Citation
  • Ahmed, K. F., Wang G. , Silander J. , Wilson A. M. , Allen J. M. , Horton R. , and Anyah R. , 2013: Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. Northeast. Global Planet. Change, 100, 320332, doi:10.1016/j.gloplacha.2012.11.003.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 2008: Mountain Weather and Climate. 3rd ed. Routledge, 512 pp.

  • Blandford, T. R., Humes K. S. , Harshburger B. J. , Moore B. C. , Walden V. P. , and Ye H. , 2008: Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. J. Appl. Meteor. Climatol., 47, 249261, doi:10.1175/2007JAMC1565.1.

    • Search Google Scholar
    • Export Citation
  • Brekke, L., Thrasher B. , Maurer E. P. , and Pruitt T. , 2013: Downscaled CMIP3 and CMIP5 climate projections: Release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs. USBR Tech. Memo., 104 pp. [Available online at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf.]

  • Daly, C., Taylor G. H. , Gibson W. P. , Parzybok T. W. , Johnson G. L. , and Pasteris P. A. , 2000: High-quality spatial climate data sets for the United States and beyond. Trans. Amer. Soc. Agric. Biol. Eng., 43, 19571962, doi:10.13031/2013.3101.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513, doi:10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Jones C. , and Asrar G. R. , 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58 (3), 175183. [Available online at http://www.wmo.int/pages/publications/bulletinarchive/archive/58_3_en/documents/58_3_giorgi_en.pdf.]

    • Search Google Scholar
    • Export Citation
  • Guilbert, J., Beckage B. , Winter J. M. , Horton R. M. , Perkins T. , and Bomblies A. , 2014: Impacts of projected climate change over the Lake Champlain basin in Vermont. J. Appl. Meteor. Climatol., 53, 18611875, doi:10.1175/JAMC-D-13-0338.1.

    • Search Google Scholar
    • Export Citation
  • Hartkamp, A. D., De Beurs K. , Stein A. , and White J. W. , 1999: Interpolation techniques for climate variables. Rep. NRG-GIS 99-01, CIMMYT, 26 pp.

  • Hidalgo, H. G., Dettinger M. D. , and Cayan D. R. , 2008: Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States. California Energy Commission PIER Final Project Rep. CEC-500-2007-123, 48 pp. [Available online at http://www.energy.ca.gov/2007publications/CEC-500-2007-123/CEC-500-2007-123.PDF.]

  • Hijmans, R. J., Cameron S. E. , Parra J. L. , Jones P. G. , and Jarvis A. , 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Search Google Scholar
    • Export Citation
  • Huntington, J. L., and Niswonger R. G. , 2012: Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resour. Res., 48, W11524, doi:10.1029/2012WR012319.

    • Search Google Scholar
    • Export Citation
  • Islam, A., Ahuja L. R. , Garcia L. A. , Ma L. , Saseendran A. S. , and Trout T. J. , 2012: Modeling the impacts of climate change on irrigated corn production in the central Great Plains. Agric. Water Manage., 110, 94108, doi:10.1016/j.agwat.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Li, J., and Heap A. D. , 2014: Spatial interpolation methods applied in the environmental sciences: A review. Environ. Modell. Software, 53, 173189, doi:10.1016/j.envsoft.2013.12.008.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and Elder K. , 2006: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217234, doi:10.1175/JHM486.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Rosenberg E. A. , Lin C. , Nijssen B. , Mishra V. , Andreadis K. M. , Maurer E. P. , and Lettenmaier D. P. , 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Lloyd, C. D., 2005: Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol., 308, 128150, doi:10.1016/j.jhydrol.2004.10.026.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and Hidalgo H. G. , 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Hidalgo H. G. , Das T. , Dettinger M. D. , and Cayan D. R. , 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, doi:10.5194/hess-14-1125-2010.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., Gutowski W. , Jones R. , Leung R. , McGinnis S. , Nunes A. , and Qian Y. , 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311311, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and Coauthors, 2012: Global Historical Climatology Network—Daily, version 3.21. Subset used: GHCN-Daily, NOAA/NCDC, accessed 15 June 2015, doi:10.7289/V5D21VHZ.

  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Swart R. , Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • Norton, C. W., Chu P.-S. , and Schroeder T. A. , 2011: Projecting changes in future heavy rainfall events for Oahu, Hawaii: A statistical downscaling approach. J. Geophys. Res., 116, D17110, doi:10.1029/2011JD015641.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., Pitman A. J. , Holbrook N. J. , and McAneney J. , 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376, doi:10.1175/JCLI4253.1.

    • Search Google Scholar
    • Export Citation
  • Petkova, E. P., Horton R. M. , Bader D. A. , and Kinney P. L. , 2013: Projected heat-related mortality in the US urban northeast. Int. J. Environ. Res. Public Health, 10, 67346747, doi:10.3390/ijerph10126734.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2013: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, doi:10.1007/s00382-012-1337-9.

    • Search Google Scholar
    • Export Citation
  • PRISM Climate Group, 2014: PRISM climate data. Oregon State University, accessed 15 October 2014. [Available online at http://prism.oregonstate.edu.]

  • Rajagopal, S., Dominguez F. , Gupta H. V. , Troch P. A. , and Castro C. L. , 2014: Physical mechanisms related to climate-induced drying of two semiarid watersheds in the southwestern United States. J. Hydrometeor., 15, 14041418, doi:10.1175/JHM-D-13-0106.1.

    • Search Google Scholar
    • Export Citation
  • Rolland, C., 2003: Spatial and seasonal variations of air temperature lapse rates in alpine regions. J. Climate, 16, 10321046, doi:10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and Coauthors, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA, 111, 32683273, doi:10.1073/pnas.1222463110.

    • Search Google Scholar
    • Export Citation
  • Sunyer, M. A., Madsen H. , and Ang P. H. , 2012: A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res., 103, 119128, doi:10.1016/j.atmosres.2011.06.011.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., Stouffer R. J. , and Meehl G. A. , 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Running S. W. , and White M. A. , 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190, 214251, doi:10.1016/S0022-1694(96)03128-9.

    • Search Google Scholar
    • Export Citation
  • van der Linden, P., and Mitchell J. F. B. , Eds., 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. ENSEMBLES Rep., Met Office Hadley Centre, 160 pp. [Available online at http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf.]

  • Westerling, A. L., and Bryant B. P. , 2008: Climate change and wildfire in California. Climatic Change, 87, 231249, doi:10.1007/s10584-007-9363-z.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Wigley T. M. L. , Conway D. , Jones P. D. , Hewitson B. C. , Main J. , and Wilks D. S. , 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34, 29953008, doi:10.1029/98WR02577.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., Leung L. R. , Sridhar V. , and Lettenmaier D. P. , 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 952 590 105
PDF Downloads 279 87 3