Simulating Human Water Regulation: The Development of an Optimal Complexity, Climate-Adaptive Reservoir Management Model for an LSM

Kurt C. Solander Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Kurt C. Solander in
Current site
Google Scholar
PubMed
Close
,
John T. Reager Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by John T. Reager in
Current site
Google Scholar
PubMed
Close
,
Brian F. Thomas Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Brian F. Thomas in
Current site
Google Scholar
PubMed
Close
,
Cédric H. David Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Cédric H. David in
Current site
Google Scholar
PubMed
Close
, and
James S. Famiglietti Jet Propulsion Laboratory, California Institute of Technology, Pasadena, and Department of Earth System Science, and Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by James S. Famiglietti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The widespread influence of reservoirs on global rivers makes representations of reservoir outflow and storage essential components of large-scale hydrology and climate simulations across the land surface and atmosphere. Yet, reservoirs have yet to be commonly integrated into earth system models. This deficiency influences model processes such as evaporation and runoff, which are critical for accurate simulations of the coupled climate system. This study describes the development of a generalized reservoir model capable of reproducing realistic reservoir behavior for future integration in a global land surface model (LSM). Equations of increasing complexity relating reservoir inflow, outflow, and storage were tested for 14 California reservoirs that span a range of spatial and climate regimes. Temperature was employed in model equations to modulate seasonal changes in reservoir management behavior and to allow for the evolution of management seasonality as future climate varies. Optimized parameter values for the best-performing model were generalized based on the ratio of winter inflow to storage capacity so a future LSM user can generate reservoirs in any grid location by specifying the given storage capacity. Model performance statistics show good agreement between observed and simulated reservoir storage and outflow for both calibration (mean normalized RMSE = 0.48; mean coefficient of determination = 0.53) and validation reservoirs (mean normalized RMSE = 0.15; mean coefficient of determination = 0.67). The low complexity of model equations that include climate-adaptive operation features combined with robust model performance show promise for simulations of reservoir impacts on hydrology and climate within an LSM.

Corresponding author address: James S. Famiglietti, Department of Earth System Science, University of California, Irvine, 3200 Croul Hall, Irvine, CA 92697. E-mail: jfamigli@uci.edu

Abstract

The widespread influence of reservoirs on global rivers makes representations of reservoir outflow and storage essential components of large-scale hydrology and climate simulations across the land surface and atmosphere. Yet, reservoirs have yet to be commonly integrated into earth system models. This deficiency influences model processes such as evaporation and runoff, which are critical for accurate simulations of the coupled climate system. This study describes the development of a generalized reservoir model capable of reproducing realistic reservoir behavior for future integration in a global land surface model (LSM). Equations of increasing complexity relating reservoir inflow, outflow, and storage were tested for 14 California reservoirs that span a range of spatial and climate regimes. Temperature was employed in model equations to modulate seasonal changes in reservoir management behavior and to allow for the evolution of management seasonality as future climate varies. Optimized parameter values for the best-performing model were generalized based on the ratio of winter inflow to storage capacity so a future LSM user can generate reservoirs in any grid location by specifying the given storage capacity. Model performance statistics show good agreement between observed and simulated reservoir storage and outflow for both calibration (mean normalized RMSE = 0.48; mean coefficient of determination = 0.53) and validation reservoirs (mean normalized RMSE = 0.15; mean coefficient of determination = 0.67). The low complexity of model equations that include climate-adaptive operation features combined with robust model performance show promise for simulations of reservoir impacts on hydrology and climate within an LSM.

Corresponding author address: James S. Famiglietti, Department of Earth System Science, University of California, Irvine, 3200 Croul Hall, Irvine, CA 92697. E-mail: jfamigli@uci.edu
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, doi:10.1109/TAC.1974.1100705.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 10801083, doi:10.1126/science.1152538.

    • Search Google Scholar
    • Export Citation
  • Biancamaria, S., and Coauthors, 2010: Preliminary characterization of SWOT hydrology error budget and global capabilities. J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 619, doi:10.1109/JSTARS.2009.2034614.

    • Search Google Scholar
    • Export Citation
  • Biemans, H., Haddeland I. , Kabat P. , Ludwig F. , Hutjes R. W. A. , Heinke J. , von Bloh W. , and Gerten D. , 2011: Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res., 47, W03509, doi:10.1029/2009WR008929.

    • Search Google Scholar
    • Export Citation
  • Brush, C. F., Dogrul E. C. , and Kadir T. N. , 2013: Development and calibration of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim), version 3.02-CG. DWR Tech. Memo, California Dept. of Water Resources, 193 pp. [Available online at http://baydeltaoffice.water.ca.gov/modeling/hydrology/C2VSim/download/C2VSim_Model_Report_Final.pdf.]

  • Cayan, D. R., Maurer E. P. , Dettinger M. D. , Tyree M. , and Hayhoe K. , 2008: Climate change scenarios for the California region. Climatic Change, 87, 2142, doi:10.1007/s10584-007-9377-6.

    • Search Google Scholar
    • Export Citation
  • Degu, A. M., Hossain F. , Niyogi D. , Pielke R. , Shepard J. M. , Voisin N. , and Chronis T. , 2011: The influence of large dams on surrounding climate and precipitation patterns. Geophys. Res. Lett., 38, L04405, doi:10.1029/2010GL046482.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Fiedler K. , and Zhang J. , 2009: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci., 13, 24132432, doi:10.5194/hess-13-2413-2009.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Hoffman-Dobrev H. , Portmann F. T. , Siebert S. , Eicker A. , Rodell M. , Strassberg G. , and Scanlon B. R. , 2012: Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn., 59-60, 143156, doi:10.1016/j.jog.2011.05.001.

    • Search Google Scholar
    • Export Citation
  • Draper, A. J., Munevar A. , Arora S. K. , Reyes E. , Parker N. L. , Chung F. I. , and Peterson L. E. , 2004: CalSim: Generalized model for reservoir system analysis. J. Water Resour. Plann. Manage., 130, 480489, doi:10.1061/(ASCE)0733-9496(2004)130:6(480).

    • Search Google Scholar
    • Export Citation
  • DWR, 2013: California Data Exchange Center. Department of Water Resources, accessed 20 November 2014. [Available online at www.cdec.water.ca.gov.]

  • Fekete, B. M., Wisser D. , Kroeze C. , Mayorga E. , Bouwman L. , Wollheim W. M. , and Vörösmarty C. J. , 2010: Millennium ecosystem assessment scenario drivers (1970–2050): Climate and hydrological alterations. Global Biogeochem. Cycles, 24, GB0A12, doi:10.1029/2009GB003593.

    • Search Google Scholar
    • Export Citation
  • Gleick, P. H., 1992: Environmental consequences of hydroelectric development: The role of facility size and type. Energy, 17, 735747, doi:10.1016/0360-5442(92)90116-H.

    • Search Google Scholar
    • Export Citation
  • Graf, W. L., 1999: Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resour. Res., 35, 13051311, doi:10.1029/1999WR900016.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., Skaugen T. , and Lettenmaier D. P. , 2006: Anthropogenic impacts on continental surface water fluxes. Geophys. Res. Lett., 33, L08406, doi:10.1029/2006GL026047.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2014: Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA, 111, 32513256, doi:10.1073/pnas.1222475110.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , and Oki T. , 2006: A reservoir operation scheme for global river routing models. J. Hydrol., 327, 2241, doi:10.1016/j.jhydrol.2005.11.011.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, doi:10.1073/pnas.0404500101.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., 2010: Empirical relationship between large dams and the alteration in extreme precipitation. Nat. Hazards, 11, 97101, doi:10.1061/(ASCE)NH.1527-6996.0000013.

    • Search Google Scholar
    • Export Citation
  • Jenkins, M. W., and Coauthors, 2001: Improving California water management: Optimizing value and flexibility. CALVIN Rep., CALFED Bay-Delta Program, Sacramento, CA, 150 pp. [Available online at http://calvin.ucdavis.edu/files/content/page/CALVINReport2001.pdf.]

  • Krause, P., Boyle D. P. , and Base F. , 2005: Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5, 8997, doi:10.5194/adgeo-5-89-2005.

    • Search Google Scholar
    • Export Citation
  • Kuczera, G., and Mroczkowski M. , 1998: Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resour. Res., 34, 14811489, doi:10.1029/98WR00496.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., and Coauthors, 2011: High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ., 9, 494502, doi:10.1890/100125.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Betancourt J. , Falkenmark M. , Hirsch R. M. , Kundzewicz Z. W. , Lettenmaier D. P. , and Stouffer R. J. , 2008: Stationarity is dead: Whither water management? Science, 319, 573574, doi:10.1126/science.1151915.

    • Search Google Scholar
    • Export Citation
  • Minear, J. T., and Kondolf G. M. , 2009: Estimating reservoir sedimentation rates at large spatial and temporal scales: A case study of California. Water Resour. Res., 45, W12502, doi:10.1029/2007WR006703.

    • Search Google Scholar
    • Export Citation
  • Mote, P., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, doi:10.1175/JCLI3971.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Nazemi, A., and Wheater H. S. , 2015a: On inclusion of water resource management in earth system models—Part 1: Problem definition and representation of water demand. Hydrol. Earth Syst. Sci., 19, 3361, doi:10.5194/hess-19-33-2015.

    • Search Google Scholar
    • Export Citation
  • Nazemi, A., and Wheater H. S. , 2015b: On inclusion of water resource management in earth system models—Part 2: Representation of water supply and allocation and opportunities for improved modeling. Hydrol. Earth Syst. Sci., 19, 6390, doi:10.5194/hess-19-63-2015.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A. R., and Mead R. , 1965: A simplex method for function minimization. Comput. J., 7, 308313, doi:10.1093/comjnl/7.4.308.

  • PRISM Climate Group, 2004: PRISM Climate Data. Oregon State University, accessed 19 January 2015. [Available online at http://prism.oregonstate.edu.]

  • Revenga, C., Campbell I. , Abell R. , de Villiers P. , and Bryer M. , 2005: Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philos. Trans. Roy. Soc. Biol. Sci., 360, 397413, doi:10.1098/rstb.2004.1595.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., Famiglietti J. S. , Chambers D. P. , Willis J. K. , and Hilburn K. , 2010: Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl. Acad. Sci. USA, 107, 17 91617 921, doi:10.1073/pnas.1003292107.

    • Search Google Scholar
    • Export Citation
  • Vanrheenen, N. T., Wood A. W. , Palmer R. N. , and Lettenmaier D. P. , 2004: Potential implications of PCM climate change scenarios for Sacramento–San Joaquin River basin hydrology and water resources. Climatic Change, 62, 257281, doi:10.1023/B:CLIM.0000013686.97342.55.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Sharma K. P. , Fekete B. M. , Copeland A. H. , Holden J. , Marble J. , and Lough J. A. , 1997: The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26, 210219.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., Gupta H. V. , Bastidas L. A. , Bouten W. , and Sorooshian S. , 2003: Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res., 39, 1214, doi:10.1029/2002WR001746.

    • Search Google Scholar
    • Export Citation
  • Wheater, H., and Gober P. , 2013: Water security in the Canadian Prairies: Science and management challenges. Philos. Trans. Roy. Soc. A., 371, 20120409, doi:10.1098/rsta.2012.0409.

    • Search Google Scholar
    • Export Citation
  • Willis, A. D., Lund J. R. , Townsley E. S. , and Faber B. A. , 2011: Climate change and flood operations in the Sacramento basin, California. San Francisco Estuary Watershed Sci., 9 (2), 118. [Available online at http://escholarship.org/uc/item/3vb559hg.]

    • Search Google Scholar
    • Export Citation
  • Wisser, D., Fekete B. M. , Vörösmarty C. J. , and Schumann A. H. , 2010: Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network–Hydrology (GTN-H). Hydrol. Earth Syst. Sci., 14, 124, doi:10.5194/hess-14-1-2010.

    • Search Google Scholar
    • Export Citation
  • Wisser, D., Frolking S. , Hagen S. , and Bierkens M. F. P. , 2013: Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour. Res., 49, 57325739, doi:10.1002/wrcr.20452.

    • Search Google Scholar
    • Export Citation
  • Yates, D., Sieber J. , Purkey D. , and Huber-Lee A. , 2005: WEAP21—A demand-, priority-, and preference-driven water planning model. Water Int., 30, 487500, doi:10.1080/02508060508691893.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 369 88 14
PDF Downloads 305 61 9