Evaluation of a Method to Enhance Real-Time, Ground Radar–Based Rainfall Estimates Using Climatological Profiles of Reflectivity from Space

Yixin Wen * School of Meteorology, University of Oklahoma, Norman, Oklahoma
Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yixin Wen in
Current site
Google Scholar
PubMed
Close
,
Pierre Kirstetter Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Pierre Kirstetter in
Current site
Google Scholar
PubMed
Close
,
Yang Hong Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
,
Jonathan J. Gourley NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jonathan J. Gourley in
Current site
Google Scholar
PubMed
Close
,
Qing Cao Research and Innovation, Enterprise Electronics Corporation, Enterprise, Alabama

Search for other papers by Qing Cao in
Current site
Google Scholar
PubMed
Close
,
Jian Zhang NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jian Zhang in
Current site
Google Scholar
PubMed
Close
,
Zac Flamig * School of Meteorology, University of Oklahoma, Norman, Oklahoma
Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
** Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Zac Flamig in
Current site
Google Scholar
PubMed
Close
, and
Xianwu Xue Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xianwu Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Over mountainous terrain, ground weather radars face limitations in monitoring surface precipitation as they are affected by radar beam blockages along with the range-dependent biases due to beam broadening and increase in altitude with range. These issues are compounded by precipitation structures that are relatively shallow and experience growth at low levels due to orographic enhancement. To improve surface precipitation estimation, researchers at the University of Oklahoma have demonstrated the benefits of integrating the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products into the ground-based NEXRAD rainfall estimation system using a vertical profile of reflectivity (VPR) identification and enhancement (VPR-IE) approach. However, the temporal resolution of TRMM limits the application of VPR-IE method operationally. To implement the VPR-IE concept into the National Mosaic and Multi-Sensor QPE (NMQ) system in real time, climatological VPRs from 11 years of TRMM PR observations have been characterized for different stratiform/convective rain types, seasons, and surface rain intensities. Then, these representative profiles are used to adjust ground radar–based precipitation estimates in the NMQ system based on different precipitation structures. This study conducts a comprehensive evaluation of the newly developed climatological VPR-IE (CVPR-IE) method on winter events (January, February, and December) in 2011. The statistical analysis reveals that the CVPR-IE method provides a clear improvement over the original radar QPE in the NMQ system for the study region. Compared to physically based VPRs from real-time PR measurements, climatological VPRs have limitations in representing precipitation structure for individual events. A hybrid correction scheme incorporating both climatological and real-time VPR information is desired for better skill in the future.

Corresponding author address: Yang Hong, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: yanghong@ou.edu

Abstract

Over mountainous terrain, ground weather radars face limitations in monitoring surface precipitation as they are affected by radar beam blockages along with the range-dependent biases due to beam broadening and increase in altitude with range. These issues are compounded by precipitation structures that are relatively shallow and experience growth at low levels due to orographic enhancement. To improve surface precipitation estimation, researchers at the University of Oklahoma have demonstrated the benefits of integrating the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products into the ground-based NEXRAD rainfall estimation system using a vertical profile of reflectivity (VPR) identification and enhancement (VPR-IE) approach. However, the temporal resolution of TRMM limits the application of VPR-IE method operationally. To implement the VPR-IE concept into the National Mosaic and Multi-Sensor QPE (NMQ) system in real time, climatological VPRs from 11 years of TRMM PR observations have been characterized for different stratiform/convective rain types, seasons, and surface rain intensities. Then, these representative profiles are used to adjust ground radar–based precipitation estimates in the NMQ system based on different precipitation structures. This study conducts a comprehensive evaluation of the newly developed climatological VPR-IE (CVPR-IE) method on winter events (January, February, and December) in 2011. The statistical analysis reveals that the CVPR-IE method provides a clear improvement over the original radar QPE in the NMQ system for the study region. Compared to physically based VPRs from real-time PR measurements, climatological VPRs have limitations in representing precipitation structure for individual events. A hybrid correction scheme incorporating both climatological and real-time VPR information is desired for better skill in the future.

Corresponding author address: Yang Hong, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: yanghong@ou.edu
Save
  • Andrieu, H., and Creutin J. D. , 1995: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 34, 225239, doi:10.1175/1520-0450(1995)034<0225:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., Lee G.-W. , and Zawadzki I. , 2005: Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteor., 44, 9981015, doi:10.1175/JAM2253.1.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., Lee G.-W. , Kilambi A. , and Zawadzki I. , 2007: Real-time comparisons of VPR-corrected daily rainfall estimates with a gauge Mesonet. J. Appl. Meteor. Climatol., 46, 726741, doi:10.1175/JAM2502.1.

    • Search Google Scholar
    • Export Citation
  • Borga, M., Anagnostou E. N. , and Frank E. , 2000: On the use of real-time radar rainfall estimates for flood prediction in mountainous basins. J. Geophys. Res., 105, 22692280, doi:10.1029/1999JD900270.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., Hong Y. , Gourley J. J. , Qi Y. , Zhang J. , Wen Y. , and Kirstetter P.-E. , 2013a: Statistical and physical analysis of the vertical structure of precipitation in the mountainous west region of the United States using 11+ years of spaceborne observations from TRMM Precipitation Radar. J. Appl. Meteor. Climatol., 52, 408424, doi:10.1175/JAMC-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., Hong Y. , Qi Y. , Wen Y. , Zhang J. , Gourley J. J. , and Liao L. , 2013b: Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency. J. Geophys. Res. Atmos., 118, 18141825, doi:10.1002/jgrd.50138.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., Wen Y. , Hong Y. , Gourley J. J. , and Kirstetter P.-E. , 2014: Enhancing Quantitative precipitation estimation over the continental United States using a ground-space multi-sensor integration approach. IEEE Geosci. Remote Sens. Lett., 11, 13051309, doi:10.1109/LGRS.2013.2295768.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Evaluation and uncertainty estimation of NOAA/NSSL Next-Generation National Mosaic Quantitative Precipitation Estimation Product (Q2) over the continental United States. J. Hydrometeor., 14, 13081322, doi:10.1175/JHM-D-12-0150.1.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 126, doi:10.1214/aos/1176344552.

  • Fabry, F., and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gabella, M., Joss J. , Michaelides S. , and Perona G. , 2006: Range adjustment for ground-based radar, derived with the spaceborne TRMM Precipitation Radar. IEEE Trans. Geosci. Remote Sens., 44, 126133, doi:10.1109/TGRS.2005.858436.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and Joss J. , 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41, 542557, doi:10.1175/1520-0450(2002)041<0542:MPTERP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grams, H. M., Zhang J. , and Elmore K. L. , 2014: Automated identification of enhanced rainfall rates using the near-storm environment for radar precipitation estimates. J. Hydrometeor., 15, 12381254, doi:10.1175/JHM-D-13-042.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Andrieu H. , Delrieu G. , and Boudevillain B. , 2010: Identification of vertical profiles of reflectivity for correction of volumetric radar data using rainfall classification. J. Appl. Meteor. Climatol., 49, 21672180, doi:10.1175/2010JAMC2369.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Andrieu H. , Boudevillain B. , and Delrieu G. , 2013: A physically based identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor. Climatol., 52, 16451663, doi:10.1175/JAMC-D-12-0228.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Gourley J. J. , Hong Y. , Zhang J. , Moazamigoodarzi S. , Langston C. , and Arthur A. , 2015: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, doi:10.1002/2014WR015672.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., Brown R. , and Davies A. G. , 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quart. J. Roy. Meteor. Soc., 120, 12311254, doi:10.1002/qj.49712051906.

    • Search Google Scholar
    • Export Citation
  • Maddox, R., Zhang J. , Gourley J. J. , and Howard K. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408, doi:10.1175/WAF1004.1.

    • Search Google Scholar
    • Export Citation
  • Vignal, B., Andrieu H. , and Creutin J. D. , 1999: Identification of vertical profiles of reflectivity from volume-scan radar data. J. Appl. Meteor., 38, 12141228, doi:10.1175/1520-0450(1999)038<1214:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wen, Y., Cao Q. , Kirstetter P.-E. , Hong Y. , Gourley J. J. , Zhang J. , Zhang G. , and Yong B. , 2013: Incorporating NASA spaceborne radar data into NOAA National Mosaic QPE system for improved precipitation measurement: A physically based VPR identification and enhancement method. J. Hydrometeor., 14, 12931307, doi:10.1175/JHM-D-12-0106.1.

    • Search Google Scholar
    • Export Citation
  • Wen, Y., Hong Y. , Kirstetter P.-E. , Cao Q. , Gourley J. J. , Zhang J. , and Xue X. , 2014: Systematical evaluation of VPR-Identification and Enhancement (VPR-IE) approach for different precipitation types. Remote Sensing of the Atmosphere, Clouds, and Precipitation V, E. Im, S. Yang, and P. Zhang, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9259), 92590C, doi:10.1117/12.2069334.

  • Zhang, J., and Qi Y. , 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor., 11, 11571171, doi:10.1175/2010JHM1201.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 365 113 5
PDF Downloads 202 66 5