Large-Scale Surface Responses during European Dry Spells Diagnosed from Land Surface Temperature

Sonja S. Folwell Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom

Search for other papers by Sonja S. Folwell in
Current site
Google Scholar
PubMed
Close
,
Phil P. Harris Centre for Ecology and Hydrology, Crowmarsh Gifford, and National Centre for Earth Observation, Wallingford, United Kingdom

Search for other papers by Phil P. Harris in
Current site
Google Scholar
PubMed
Close
, and
Christopher M. Taylor Centre for Ecology and Hydrology, Crowmarsh Gifford, and National Centre for Earth Observation, Wallingford, United Kingdom

Search for other papers by Christopher M. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Soil moisture plays a fundamental role in regulating the summertime surface energy balance across Europe. Understanding the spatial and temporal behavior in soil moisture and its control on evapotranspiration (ET) is critically important and influences heat wave events. Global climate models (GCMs) exhibit a broad range of land responses to soil moisture in regions that lie between wet and dry soil regimes. In situ observations of soil moisture and evaporation are limited in space, and given the spatial heterogeneity of the landscape, are unrepresentative of the GCM gridbox scale. On the other hand, satelliteborne observations of land surface temperature (LST) can provide important information at the larger scale. As a key component of the surface energy balance, LST is used to provide an indirect measure of surface drying across the landscape. To isolate soil moisture constraints on evaporation, time series of clear-sky LST are analyzed during dry spells lasting at least 10 days from March to October. Averaged over thousands of dry spell events across Europe, and accounting for atmospheric temperature variations, regional surface warming of between 0.5 and 0.8 K is observed over the first 10 days of a dry spell. Land surface temperatures are found to be sensitive to antecedent rainfall; stronger dry spell warming rates are observed following relatively wet months, indicative of soil moisture memory effects on the monthly time scale. Furthermore, clear differences in surface warming rate are found between cropland and forest, consistent with contrasting hydrological and aerodynamic properties.

Corresponding author address: Sonja S. Folwell, Centre for Ecology and Hydrology, CEH Wallingford, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom. E-mail: ssf@ceh.ac.uk

Abstract

Soil moisture plays a fundamental role in regulating the summertime surface energy balance across Europe. Understanding the spatial and temporal behavior in soil moisture and its control on evapotranspiration (ET) is critically important and influences heat wave events. Global climate models (GCMs) exhibit a broad range of land responses to soil moisture in regions that lie between wet and dry soil regimes. In situ observations of soil moisture and evaporation are limited in space, and given the spatial heterogeneity of the landscape, are unrepresentative of the GCM gridbox scale. On the other hand, satelliteborne observations of land surface temperature (LST) can provide important information at the larger scale. As a key component of the surface energy balance, LST is used to provide an indirect measure of surface drying across the landscape. To isolate soil moisture constraints on evaporation, time series of clear-sky LST are analyzed during dry spells lasting at least 10 days from March to October. Averaged over thousands of dry spell events across Europe, and accounting for atmospheric temperature variations, regional surface warming of between 0.5 and 0.8 K is observed over the first 10 days of a dry spell. Land surface temperatures are found to be sensitive to antecedent rainfall; stronger dry spell warming rates are observed following relatively wet months, indicative of soil moisture memory effects on the monthly time scale. Furthermore, clear differences in surface warming rate are found between cropland and forest, consistent with contrasting hydrological and aerodynamic properties.

Corresponding author address: Sonja S. Folwell, Centre for Ecology and Hydrology, CEH Wallingford, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom. E-mail: ssf@ceh.ac.uk
Save
  • Anderson, M. C., Norman J. M. , Mecikalski J. R. , Otkin J. A. , and Kustas W. P. , 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Kustas W. P. , Houborg R. , Starks P. J. , and Agam N. , 2008: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ., 112, 42274241, doi:10.1016/j.rse.2008.07.009.

    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., Menenti M. , Feddes R. A. , and Holtslag A. A. M. , 1998: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol., 212–213, 198212, doi:10.1016/S0022-1694(98)00253-4.

    • Search Google Scholar
    • Export Citation
  • Bisselink, B., van Meijgaard E. , Dolman A. J. , and de Jeu R. A. M. , 2011: Initializing a regional climate model with satellite-derived soil moisture. J. Geophys. Res., 116, D02121, doi:10.1029/2010JD014534.

    • Search Google Scholar
    • Export Citation
  • Blyth, E., Gash J. , Lloyd A. , Pryor M. , Weedon G. P. , and Shuttleworth J. , 2010: Evaluating the JULES land surface model energy fluxes using FLUXNET data. J. Hydrometeor., 11, 509519, doi:10.1175/2009JHM1183.1.

    • Search Google Scholar
    • Export Citation
  • Boé, J., and Terray L. , 2008: Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys. Res. Lett., 35, L05702, doi:10.1029/2007GL032417.

    • Search Google Scholar
    • Export Citation
  • Boé, J., and Terray L. , 2014: Land–sea contrast, soil–atmosphere and cloud–temperature interactions: Interplays and roles in future summer European climate change. Climate Dyn., 42, 683699, doi:10.1007/s00382-013-1868-8.

    • Search Google Scholar
    • Export Citation
  • Carlson, T., 2007: An overview of the “Triangle Method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7, 16121629, doi:10.3390/s7081612.

    • Search Google Scholar
    • Export Citation
  • Castelli, F., Entekhabi D. , and Caporali E. , 1999: Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance. Water Resour. Res., 35, 31153125, doi:10.1029/1999WR900140.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., Bastin S. , Yiou P. , Haeffelin M. , Dupont J.-C. , and Stefanon M. , 2014: European heatwave in July 2006: Observations and modeling showing how local processes amplify conducive large-scale conditions. Geophys. Res. Lett., 41, 56445652, doi:10.1002/2014GL060205.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Boberg F. , 2012: Temperature dependent climate projection deficiencies in CMIP5 models. Geophys. Res. Lett., 39, L24705, doi:10.1029/2012GL053650.

    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529533, doi:10.1038/nature03972.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., Kustas W. P. , and Prueger J. H. , 2008: Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sens. Environ., 112, 12681281, doi:10.1016/j.rse.2006.11.033.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., Seneviratne S. I. , Lüthi D. , and Schär C. , 2007a: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., Seneviratne S. I. , Vidale P. L. , Lüthi D. , and Schär C. , 2007b: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, doi:10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Garcia-Herrera, R., Diaz J. , Trigo R. M. , Luterbacher J. , and Fischer E. M. , 2010: A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306, doi:10.1080/10643380802238137.

    • Search Google Scholar
    • Export Citation
  • Granier, A., and Coauthors, 2007: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteor., 143, 123145, doi:10.1016/j.agrformet.2006.12.004.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., Hofstra N. , Klein Tank A. M. G. , Klok E. J. , Jones P. D. , and New M. , 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2011: Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, doi:10.1029/2010JG001566.

    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., McVicar T. R. , and McCabe M. F. , 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29, 421469, doi:10.1007/s10712-008-9037-z.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., Holmes T. R. H. , De Jeu R. A. M. , Gash J. H. , Meesters A. G. C. A. , and Dolman A. J. , 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, doi:10.5194/hess-15-453-2011.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., Teuling A. J. , van Heerwaarden C. C. , and de Arellano J. V. G. , 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, doi:10.1038/ngeo2141.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. 19th Symposia of the Society for Experimental Biology, Cambridge University Press, 205–234.

  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., Kustas W. P. , and Humes K. S. , 1995: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteor., 77, 263293, doi:10.1016/0168-1923(95)02265-Y; Corrigendum, 80, 297, doi:10.1016/0168-1923(96)02344-1.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., Finlayson B. L. , and McMahon T. A. , 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Quesada, B., Vautard R. , Yiou P. , Hirschi M. , and Seneviratne S. I. , 2012: Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Climate Change, 2, 736741, doi:10.1038/nclimate1536.

    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., 1997: Soil and moisture independent estimation of stage-two evaporation from potential evaporation and albedo or surface temperature. Water Resour. Res., 33, 111122, doi:10.1029/96WR02858.

    • Search Google Scholar
    • Export Citation
  • Stap, L. B., van den Hurk B. J. J. M. , van Heerwaarden C. C. , and Neggers R. A. J. , 2014: Modeled contrast in the response of the surface energy balance to heat waves for forest and grassland. J. Hydrometeor., 15, 973989, doi:10.1175/JHM-D-13-029.1.

    • Search Google Scholar
    • Export Citation
  • Stegehuis, A. I., Teuling A. J. , Ciais P. , Vautard R. , and Jung M. , 2013: Future European temperature change uncertainties reduced by using land heat flux observations. Geophys. Res. Lett., 40, 22422245, doi:10.1002/grl.50404.

    • Search Google Scholar
    • Export Citation
  • Tan, K. C., Lim H. S. , MatJafri M. Z. , and Abdullah K. , 2012: A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery. Environ. Monit. Assess., 184, 38133829, doi:10.1007/s10661-011-2226-0.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2009: A regional perspective on trends in continental evaporation. Geophys. Res. Lett., 36, L02404, doi:10.1029/2008GL036584.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722727, doi:10.1038/ngeo950.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., Seneviratne S. I. , Williams C. , and Troch P. A. , 2006: Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett., 33, L23403, doi:10.1029/2006GL028178.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., Beekmann M. , Desplat J. , Hodzic A. , and Morel S. , 2007a: Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate. C. R. Geosci., 339, 747763, doi:10.1016/j.crte.2007.08.003.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007b: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2013: The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dyn., 41, 25552575, doi:10.1007/s00382-013-1714-z.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2008: New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ., 112, 5974, doi:10.1016/j.rse.2006.06.026.

    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., Balsamo G. , Bellouin N. , Gomes S. , Best M. J. , and Viterbo P. , 2014: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 75057514, doi:10.1002/2014WR015638.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., Doblas-Reyes F. J. , Jung T. , and Palmer T. N. , 2011: On the predictability of the extreme summer 2003 over Europe. Geophys. Res. Lett., 38, L05704, doi:10.1029/2010GL046455.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., Macalady A. K. , Bonneau L. R. , and Smith R. B. , 2006: Europe’s 2003 heat wave: A satellite view of impacts and land-atmosphere feedbacks. Int. J. Climatol., 26, 743769, doi:10.1002/joc.1280.

    • Search Google Scholar
    • Export Citation
  • Zampieri, M., D’Andrea F. , Vautard R. , Ciais P. , de Noblet-Ducoudre N. , and Yiou P. , 2009: Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J. Climate, 22, 47474758, doi:10.1175/2009JCLI2568.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 628 305 151
PDF Downloads 288 56 4