Expected Future Runoff of the Upper Jordan River Simulated with a CORDEX Climate Data Ensemble

Gerhard Smiatek Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by Gerhard Smiatek in
Current site
Google Scholar
PubMed
Close
and
Harald Kunstmann Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, and Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Data from five different RCMs run in two experiments from the Coordinated Regional Climate Downscaling Experiment (CORDEX) are applied together with the Water Flow and Balance Simulation Model (WaSiM) to assess the future availability of water in the upper Jordan River. Simulation results for 1976–2000 show that the modeling system was able to reasonably reproduce the observed discharge rates in the partially karstic complex terrain without bias correction of the precipitation input. For the future climate in the area, the applied CORDEX models indicate an increasing annual mean temperature for 2031–60 by 1.8 K above the 1971–2000 mean and by 2.6 K for 2071–2100. The simulated ensemble mean precipitation is predicted to decrease by 16.3% in the first period and 22.1% at the end of the century. In relation to the mean for 1976–2000, the discharge of the upper Jordan River is simulated to decrease by 7.4% until 2060 and by 17.5% until 2100, together with a reduction of high river flow years.

Denotes Open Access content.

Corresponding author address: Gerhard Smiatek, Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany. E-mail: gerhard.smiatek@kit.edu

Abstract

Data from five different RCMs run in two experiments from the Coordinated Regional Climate Downscaling Experiment (CORDEX) are applied together with the Water Flow and Balance Simulation Model (WaSiM) to assess the future availability of water in the upper Jordan River. Simulation results for 1976–2000 show that the modeling system was able to reasonably reproduce the observed discharge rates in the partially karstic complex terrain without bias correction of the precipitation input. For the future climate in the area, the applied CORDEX models indicate an increasing annual mean temperature for 2031–60 by 1.8 K above the 1971–2000 mean and by 2.6 K for 2071–2100. The simulated ensemble mean precipitation is predicted to decrease by 16.3% in the first period and 22.1% at the end of the century. In relation to the mean for 1976–2000, the discharge of the upper Jordan River is simulated to decrease by 7.4% until 2060 and by 17.5% until 2100, together with a reduction of high river flow years.

Denotes Open Access content.

Corresponding author address: Gerhard Smiatek, Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany. E-mail: gerhard.smiatek@kit.edu
Save
  • Addor, N., Rössler O. , Köplin N. , Huss M. , Weingartner R. , and Seibert J. , 2014: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resour. Res., 50, 75417562, doi:10.1002/2014WR015549.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., Krichak S. , Shafir H. , Haim D. , and Osetinsky I. , 2008: Climatic trends to extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Global Planet. Change, 63, 163170, doi:10.1016/j.gloplacha.2008.03.003.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., Rebetez M. , Giorgi F. , and Marinucci M. R. , 1994: An analysis of regional climate change in Switzerland. Theor. Appl. Climatol., 49, 135159, doi:10.1007/BF00865530.

    • Search Google Scholar
    • Export Citation
  • Black, E., 2009: The impact of climate change on daily precipitation statistics in Jordan and Israel. Atmos. Sci. Lett., 10, 192200, doi:10.1002/asl.233.

    • Search Google Scholar
    • Export Citation
  • Brielmann, H., 2008: Recharge and discharge mechanism and dynamics in the mountainous northern upper Jordan River catchment, Israel. Ph.D. thesis, Faculty of Geosciences, Ludwig Maximilians University Munich, 305 pp. [Available online at https://edoc.ub.uni-muenchen.de/9972/1/Brielmann_Heike.pdf.]

  • Funk, C., and Coauthors, 2014: A quasi-global precipitation time series for drought monitoring. U.S. Geological Survey Data Series 832, 4 pp., doi:10.3133/ds832.

  • Giorgi, F., 2002: Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: Observations. Climate Dyn., 18, 675691, doi:10.1007/s00382-001-0204-x.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Hurrell J. W. , Marinucci M. R. , and Beniston M. , 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288296, doi:10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Bi X. , and Pal J. S. , 2004: Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Climate Dyn., 22, 733756, doi:10.1007/s00382-004-0409-x.

    • Search Google Scholar
    • Export Citation
  • Givati, A., Lynn B. , Liu Y. , and Rimmer A. , 2012: Using the WRF Model in an operational streamflow forecast system for the Jordan River. J. Appl. Meteor. Climatol., 51, 285299, doi:10.1175/JAMC-D-11-082.1.

    • Search Google Scholar
    • Export Citation
  • Goldscheider, N., and Drew D. , 2007: Methods in Karst Hydrogeology. Taylor and Francis, 278 pp.

  • Green, W., and Ampt G. , 1911: Studies in soil physics. I. Flow of air and water through soils. J. Agric. Sci., 4, 124, doi:10.1017/S0021859600001441.

    • Search Google Scholar
    • Export Citation
  • Gur, D., Bar-Matthew M. , and Sass E. , 2003: Hydrochemistry of the main Jordan River sources: Dan, Banias, and Kezinim springs, north Hula Valley, Israel. Isr. J. Earth Sci., 52, 155178, doi:10.1560/RRMW-9WXD-31VU-MWHN.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., Hofstra N. , Klein Tank A. , Klok E. , Jones P. , and New M. , 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Heckl, A., 2011: Impact of climate change on the water availability in the Near East and the upper Jordan River catchment. Ph.D. thesis, University of Augsburg, 181 pp. [Available online at nbn-resolving.de/urn:nbn:de:bvb:384-opus-18095.]

  • Hertig, E., and Jacobeit J. , 2008: Downscaling future climate change: Temperature scenarios for the Mediterranean area. Global Planet. Change, 63, 127131, doi:10.1016/j.gloplacha.2007.09.003.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, doi:10.1007/s10113-013-0499-2.

    • Search Google Scholar
    • Export Citation
  • Jung, G., Wagner S. , and Kunstmann H. , 2012: Joint climate–hydrology modeling: An impact study for the data-sparse environment of the Volta basin in West Africa. Hydrol. Res., 43, 231247, doi:10.2166/nh.2012.044.

    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev., 7, 12971333, doi:10.5194/gmd-7-1297-2014.

    • Search Google Scholar
    • Export Citation
  • Kraller, G., Warscher M. , Kunstmann H. , Vogl S. , Marke T. , and Strasser U. , 2012: Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach (Berchtesgaden Alps, Germany). Hydrol. Earth Syst. Sci., 16, 19691990, doi:10.5194/hess-16-1969-2012.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., Alpert P. , Bassat K. , and Kunin P. , 2007: The surface climatology of the eastern Mediterranean region obtained in a three-member ensemble climate change simulation experiment. Adv. Geosci., 12, 6780, doi:10.5194/adgeo-12-67-2007.

    • Search Google Scholar
    • Export Citation
  • Kunstmann, H., Heckl A. , and Rimmer A. , 2006: Physically based distributed hydrological modelling of the upper Jordan catchment and investigation of effective model equations. Adv. Geosci., 9, 123130, doi:10.5194/adgeo-9-123-2006.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and Willmott C. J. , 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, doi:10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Majone, B., Bovolo C. I. , Bellin A. , Blenkinsop S. , and Fowler H. J. , 2012: Modeling the impacts of future climate change on water resources for the Gallego River basin (Spain). Water Resour. Res., 48, W01512, doi:10.1029/2011WR010985.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, doi:10.1029/2012GL051210.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., Osborn T. J. , and Rust H. W. , 2012: The influence of synoptic airflow on UK daily precipitation extremes. Part II: Regional climate model and E-OBS data validation. Climate Dyn., 39, 287301, doi:10.1007/s00382-011-1176-0.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Monteith, J., 1975: Vegetation and the Atmosphere. Academic Press, 278 pp.

  • Peleg, N., Bartov M. , and Morin E. , 2015: CMIP5-predicted climate shifts over the east Mediterranean: Implications for the transition region between Mediterranean and semi-arid climates. Int. J. Climatol., 35, 21442153, doi:10.1002/joc.4114.

    • Search Google Scholar
    • Export Citation
  • Peschke, G., 1987: Soil moisture and runoff components from a physically founded approach. Acta Hydrophys., 31, 191205.

  • Polade, S. D., Pierce D. W. , Cayan D. R. , Gershunov A. , and Dettinger M. D. , 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, doi:10.1038/srep04364.

    • Search Google Scholar
    • Export Citation
  • Rimmer, A., and Salingar Y. , 2006: Modelling precipitation-streamflow processes in karst basin: The case of the Jordan River sources, Israel. J. Hydrol., 331, 524542, doi:10.1016/j.jhydrol.2006.06.003.

    • Search Google Scholar
    • Export Citation
  • Ruti, P., and Coauthors, 2016: MED-CORDEX initiative for Mediterranean climate studies. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00176.1, in press.

    • Search Google Scholar
    • Export Citation
  • Samuels, R., Rimmer A. , and Alpert P. , 2009: Effect of extreme rainfall events on the water resources of the Jordan River, Israel. J. Hydrol., 375, 513523, doi:10.1016/j.jhydrol.2009.07.001.

    • Search Google Scholar
    • Export Citation
  • Samuels, R., Rimmer A. , Hartman A. , Krichak S. , and Alpert P. , 2010: Climate change impacts on Jordan River flow: Downscaling application from a regional climate model. J. Hydrometeor., 11, 860879, doi:10.1175/2010JHM1177.1.

    • Search Google Scholar
    • Export Citation
  • Samuels, R., Smiatek G. , Krichak S. , Kunstmann H. , and Alpert P. , 2011: Extreme value indicators in highly resolved climate change simulations for the Jordan River area. J. Geophys. Res., 116, D24123, doi:10.1029/2011JD016322.

    • Search Google Scholar
    • Export Citation
  • Sauter, M., Geyer T. , Kovács A. , and Teutsch G. , 2006: Modellierung der Hydraulik von Karstgrundwasserleitern—Eine Übersicht. Grundwasser, 11, 143156, doi:10.1007/s00767-006-0140-0.

    • Search Google Scholar
    • Export Citation
  • Schulla, J., 2014: Model description WaSiM. Tech. Rep., ETH Zürich, 305 pp. [Available online at http://www.wasim.ch/downloads/doku/wasim/wasim_2015_en.pdf.]

  • Senatore, A., Mendicino G. , Smiatek G. , and Kunstmann H. , 2011: Regional climate change projections and hydrological impact analysis for a Mediterranean basin in southern Italy. J. Hydrol., 399, 7092, doi:10.1016/j.jhydrol.2010.12.035.

    • Search Google Scholar
    • Export Citation
  • Smadi, M., and Zghoul A. , 2006: A sudden change in rainfall characteristics in Amman, Jordan during the mid 1950s. Amer. J. Environ. Sci., 2, 8491, doi:10.3844/ajessp.2006.84.91.

    • Search Google Scholar
    • Export Citation
  • Smiatek, G., Kunstmann H. , and Heckl A. , 2011: High resolution climate change simulations for the Jordan River area. J. Geophys. Res., 116, D16111, doi:10.1029/2010JD015313.

    • Search Google Scholar
    • Export Citation
  • Smiatek, G., Kunstmann H. , and Heckl A. , 2014: High-resolution climate change impact analysis on expected future water availability in the upper Jordan catchment and the Middle East. J. Hydrometeor., 15, 15171531, doi:10.1175/JHM-D-13-0153.1.

    • Search Google Scholar
    • Export Citation
  • Somot, S., Sevault F. , Déqué M. , and Crépon M. , 2008: 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model. Global Planet. Change, 63, 112126, doi:10.1016/j.gloplacha.2007.10.003.

    • Search Google Scholar
    • Export Citation
  • Tramblay, Y., Ruelland D. , Somot S. , Bouaicha R. , and Servat E. , 2013: High-resolution MED-CORDEX regional climate model simulations for hydrological impact studies: A first evaluation of the ALADIN-Climate model in Morocco. Hydrol. Earth Syst. Sci., 17, 37213739, doi:10.5194/hess-17-3721-2013.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892898, doi:10.2136/sssaj1980.03615995004400050002x.

    • Search Google Scholar
    • Export Citation
  • Vano, J. A., Das T. , and Lettenmaier D. P. , 2012: Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J. Hydrometeor., 13, 932949, doi:10.1175/JHM-D-11-069.1.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2013: The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dyn., 41, 25552575, doi:10.1007/s00382-013-1714-z.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., and Jones P. D. , 1985: Influences of precipitation changes and direct CO2 effects on streamflow. Nature, 314, 149152, doi:10.1038/314149a0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 321 81 3
PDF Downloads 187 51 4