Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) Monthly Precipitation Products: Initial Results

Zhong Liu Center for Spatial Information Science and Systems, George Mason University, Fairfax, Virginia

Search for other papers by Zhong Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Launched on 27 February 2014, the Global Precipitation Measurement (GPM) mission comprises an international constellation of satellites to provide the next generation of global observations of precipitation. Built upon the success of the widely used TRMM Multisatellite Precipitation Analysis (TMPA) products, the Integrated Multisatellite Retrievals for GPM (IMERG) products continue to make improvements in areas such as spatial and temporal resolutions and snowfall estimates, etc., which will be valuable for research and applications. During the transition from TMPA to IMERG, characterizing the differences between these two product suites is important in order for users to make adjustments in research and applications accordingly. In this study, the newly released IMERG Final Run monthly product is compared with the TMPA monthly product (3B43) in the boreal summer of 2014 and the boreal winter of 2014/15 on a global scale. The results show the IMERG monthly product can capture major heavy precipitation regions in the Northern and Southern Hemispheres reasonably well. Differences between IMERG and 3B43 vary with surface types and precipitation rates in both seasons. Over land, systematic differences are much smaller compared to those over ocean because of the similar gauge adjustment used in the two monthly products. Positive relative differences (IMERG > 3B43) are primarily found at low precipitation rates and negative differences (IMERG < 3B43) at high precipitation rates. Over ocean, negative systematic differences (IMERG < 3B43) prevail at all precipitation rates. Analysis of the passive microwave (PMW) and infrared (IR) monthly products from TMPA and IMERG shows the large systematic differences in the tropical oceans are closely associated with the differences in the PMW products.

Denotes Open Access content.

Corresponding author address: Zhong Liu, Center for Spatial Information Science and Systems, George Mason University, 4400 University Dr., Fairfax, VA 22030. E-mail: zliu@gmu.edu

Abstract

Launched on 27 February 2014, the Global Precipitation Measurement (GPM) mission comprises an international constellation of satellites to provide the next generation of global observations of precipitation. Built upon the success of the widely used TRMM Multisatellite Precipitation Analysis (TMPA) products, the Integrated Multisatellite Retrievals for GPM (IMERG) products continue to make improvements in areas such as spatial and temporal resolutions and snowfall estimates, etc., which will be valuable for research and applications. During the transition from TMPA to IMERG, characterizing the differences between these two product suites is important in order for users to make adjustments in research and applications accordingly. In this study, the newly released IMERG Final Run monthly product is compared with the TMPA monthly product (3B43) in the boreal summer of 2014 and the boreal winter of 2014/15 on a global scale. The results show the IMERG monthly product can capture major heavy precipitation regions in the Northern and Southern Hemispheres reasonably well. Differences between IMERG and 3B43 vary with surface types and precipitation rates in both seasons. Over land, systematic differences are much smaller compared to those over ocean because of the similar gauge adjustment used in the two monthly products. Positive relative differences (IMERG > 3B43) are primarily found at low precipitation rates and negative differences (IMERG < 3B43) at high precipitation rates. Over ocean, negative systematic differences (IMERG < 3B43) prevail at all precipitation rates. Analysis of the passive microwave (PMW) and infrared (IR) monthly products from TMPA and IMERG shows the large systematic differences in the tropical oceans are closely associated with the differences in the PMW products.

Denotes Open Access content.

Corresponding author address: Zhong Liu, Center for Spatial Information Science and Systems, George Mason University, 4400 University Dr., Fairfax, VA 22030. E-mail: zliu@gmu.edu
Save
  • Aonashi, K., and Coauthors, 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Hsu K.-L. , Imam B. , Sorooshian S. , Huffman G. J. , and Kuligowski R. J. , 2009: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 14141429, doi:10.1175/2009JHM1139.1.

    • Search Google Scholar
    • Export Citation
  • Garstang, M., and Kummerow C. D. , 2000: The Joanne Simpson special issue on the Tropical Rainfall Measuring Mission (TRMM). J. Appl. Meteor., 39, 19611961, doi:10.1175/1520-0450(2001)040<1961:TJSSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36, 11911201, doi:10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Bolvin D. T. , 2014: TRMM and other data precipitation data set documentation. TRMM Doc., 42 pp. [Available online at ftp://meso-a.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.]

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-satellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Nelkin E. J. , 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer-Verlag, 3–22.

  • Huffman, G. J., Bolvin D. T. , Braithwaite D. , Hsu K. , Joyce R. , Kidd C. , Nelkin E. J. , and Xie P. , 2015a: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 26 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.]

  • Huffman, G. J., Bolvin D. T. , and Nelkin E. J. , 2015b: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA Doc., 47 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.]

  • Huffman, G. J., Bolvin D. T. , and Nelkin E. J. , 2015c: Day 1 IMERG final run release notes. NASA Doc., 9 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_FinalRun_Day1_release_notes.pdf.]

  • Janowiak, J. E., Joyce R. J. , and Yarosh Y. , 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, doi:10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Randel D. , Kirstetter P. , Wang N.-Y. , Petkovic V. , Kulie M. , and Ferraro R. , 2014a: Global Precipitation Measurement (GPM) mission. Algorithm Theoretical Basis Doc., version 1.4, 46 pp. [Available online at http://rain.atmos.colostate.edu/ATBD/ATBD_GPM_Aug1_2014.pdf.]

  • Kummerow, C., Randel D. , Kirstetter P. , Wang N.-Y. , Petkovic V. , Kulie M. , and Ferraro R. , 2014b: Initial GPROF GPM results using a GPM derived database. Seventh IPWG Workshop on Precipitation Measurements, Tsukuba, Japan, International Precipitation Working Group. [Available online at http://www.isac.cnr.it/~ipwg/meetings/tsukuba-2014/pres/4-2_Kummerow.pdf.]

  • Liu, Z., 2015a: Comparison of precipitation estimates between version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products. Atmos. Res., 153, 119133, doi:10.1016/j.atmosres.2014.07.032.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2015b: Comparison of versions 6 and 7 3-Hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) research products. Atmos. Res., 163, 91101, doi:10.1016/j.atmosres.2014.12.015.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Ostrenga D. , Teng W. , and Kempler S. , 2012: Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Amer. Meteor. Soc., 93, 13171325, doi:10.1175/BAMS-D-11-00152.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Becker A. , Meyer-Christoffer A. , Ziese M. , and Rudolf B. , 2011: Global Precipitation Analysis Products of the GPCC. GPCC Doc., DWD, 13 pp. [Available online at ftp://ftp.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_v2011.pdf.]

  • Sorooshian, S., Hsu K.-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1505 451 94
PDF Downloads 1271 262 37