A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products

Yumeng Tao Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Yumeng Tao in
Current site
Google Scholar
PubMed
Close
,
Xiaogang Gao Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Xiaogang Gao in
Current site
Google Scholar
PubMed
Close
,
Kuolin Hsu Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Kuolin Hsu in
Current site
Google Scholar
PubMed
Close
,
Soroosh Sorooshian Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Soroosh Sorooshian in
Current site
Google Scholar
PubMed
Close
, and
Alexander Ihler Department of Computer Science, University of California, Irvine, Irvine, California

Search for other papers by Alexander Ihler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Despite the advantage of global coverage at high spatiotemporal resolutions, satellite remotely sensed precipitation estimates still suffer from insufficient accuracy that needs to be improved for weather, climate, and hydrologic applications. This paper presents a framework of a deep neural network (DNN) that improves the accuracy of satellite precipitation products, focusing on reducing the bias and false alarms. The state-of-the-art deep learning techniques developed in the area of machine learning specialize in extracting structural information from a massive amount of image data, which fits nicely into the task of retrieving precipitation data from satellite cloud images. Stacked denoising autoencoder (SDAE), a widely used DNN, is applied to perform bias correction of satellite precipitation products. A case study is conducted on the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) with spatial resolution of 0.08° × 0.08° over the central United States, where SDAE is used to process satellite cloud imagery to extract information over a window of 15 × 15 pixels. In the study, the summer of 2012 (June–August) and the winter of 2012/13 (December–February) serve as the training periods, while the same seasons of the following year (summer of 2013 and winter of 2013/14) are used for validation purposes. To demonstrate the effectiveness of the methodology outside the study area, three more regions are selected for additional validation. Significant improvements are achieved in both rain/no-rain (R/NR) detection and precipitation rate quantification: the results make 33% and 43% corrections on false alarm pixels and 98% and 78% bias reductions in precipitation rates over the validation periods of the summer and winter seasons, respectively.

Corresponding author address: Yumeng Tao, Department of Civil and Environmental Engineering, University of California, Irvine, E4130 Engineering Gateway, Irvine, CA 92697. E-mail: yumengt@uci.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

Despite the advantage of global coverage at high spatiotemporal resolutions, satellite remotely sensed precipitation estimates still suffer from insufficient accuracy that needs to be improved for weather, climate, and hydrologic applications. This paper presents a framework of a deep neural network (DNN) that improves the accuracy of satellite precipitation products, focusing on reducing the bias and false alarms. The state-of-the-art deep learning techniques developed in the area of machine learning specialize in extracting structural information from a massive amount of image data, which fits nicely into the task of retrieving precipitation data from satellite cloud images. Stacked denoising autoencoder (SDAE), a widely used DNN, is applied to perform bias correction of satellite precipitation products. A case study is conducted on the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) with spatial resolution of 0.08° × 0.08° over the central United States, where SDAE is used to process satellite cloud imagery to extract information over a window of 15 × 15 pixels. In the study, the summer of 2012 (June–August) and the winter of 2012/13 (December–February) serve as the training periods, while the same seasons of the following year (summer of 2013 and winter of 2013/14) are used for validation purposes. To demonstrate the effectiveness of the methodology outside the study area, three more regions are selected for additional validation. Significant improvements are achieved in both rain/no-rain (R/NR) detection and precipitation rate quantification: the results make 33% and 43% corrections on false alarm pixels and 98% and 78% bias reductions in precipitation rates over the validation periods of the summer and winter seasons, respectively.

Corresponding author address: Yumeng Tao, Department of Civil and Environmental Engineering, University of California, Irvine, E4130 Engineering Gateway, Irvine, CA 92697. E-mail: yumengt@uci.edu

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save
  • AghaKouchak, A., Nasrollahi N. , Li J. , Imam B. , and Sorooshian S. , 2011: Geometrical characterization of precipitation patterns. J. Hydrometeor., 12, 274285, doi:10.1175/2010JHM1298.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and Mitchell K. E. , 1996: The NCEP hourly multi-sensor U.S. precipitation analysis. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., J95–J96.

  • Behrangi, A., Hsu K. L. , Imam B. , Sorooshian S. , Huffman G. J. , and Kuligowski R. J. , 2009: PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis. J. Hydrometeor., 10, 14141429, doi:10.1175/2009JHM1139.1.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T. J., and Sun J. Z. , 2005: Probabilistic and ensemble representations of the uncertainty in an IR/microwave satellite precipitation product. J. Hydrometeor., 6, 10321044, doi:10.1175/JHM454.1.

    • Search Google Scholar
    • Export Citation
  • Bengio, Y., 2009: Learning deep architectures for AI. Found. Trends Mach. Learn., 2, 1127, doi:10.1561/2200000006.

  • Bengio, Y., Lamblin P. , Popovici D. , and Larochelle H. , 2007: Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems 19, B. Scholkopf, J. Platt, and T. Hoffman, Eds., MIT Press, 153–160.

    • Search Google Scholar
    • Export Citation
  • Bourlard, H., and Kamp Y. , 1988: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern., 59, 291294, doi:10.1007/BF00332918.

    • Search Google Scholar
    • Export Citation
  • Boushaki, F. I., Hsu K. L. , Sorooshian S. , Park G. H. , Mahani S. , and Shi W. , 2009: Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the southwestern United States. J. Hydrometeor., 10, 12311242, doi:10.1175/2009JHM1099.1.

    • Search Google Scholar
    • Export Citation
  • Glorot, X., Bordes A. , and Bengio Y. , 2011a: Deep sparse rectifier neural networks. J. Mach. Learn. Res., 15, 315–323. [Available online at http://jmlr.csail.mit.edu/proceedings/papers/v15/glorot11a/glorot11a.pdf.]

  • Glorot, X., Bordes A. , and Bengio Y. , 2011b: Domain adaptation for large-scale sentiment classification: A deep learning approach. Proceedings of the 28th International Conference on Machine Learning, L. Getoor and T. Scheffer, Eds., Omnipress, 513–520. [Available online at http://www.icml-2011.org/papers/342_icmlpaper.pdf.]

  • Hinton, G. E., and Zemel R. S. , 1993: Autoencoders, minimum description length and Helmholtz free energy. Advances in Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector, Eds., Morgan Kaufmann, 3–10. [Available online at http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy.]

  • Hinton, G. E., Osindero S. , and Teh Y. W. , 2006: A fast learning algorithm for deep belief nets. Neural Comput., 18, 15271554, doi:10.1162/neco.2006.18.7.1527.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. L. , Sorooshian S. , and Gao X. G. , 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341852, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Gochis D. , Cheng J. T. , Hsu K. L. , and Sorooshian S. , 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME Event Rain Gauge Network. J. Hydrometeor., 8, 469482, doi:10.1175/JHM574.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., Gao X. G. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. R. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104, doi:10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3, 112130, doi:10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Le, Q. V., Ngiam J. , Coates A. , Lahiri A. , Prochnow B. , and Ng A. Y. , 2011: On optimization methods for deep learning. Proceedings of the 28th International Conference on Machine Learning, L. Getoor and T. Scheffer, Eds., Omnipress, 265–272. [Available online at http://www.icml-2011.org/papers/210_icmlpaper.pdf.]

    • Search Google Scholar
    • Export Citation
  • Lee, H., Ekanadham C. , and Ng A. , 2007: Sparse deep belief net model for visual area V2. Advances in Neural Information Processing Systems 20, J. C. Platt et al., Eds., MIT Press, 8 pp. [Available online at http://papers.nips.cc/paper/3313-sparse-deep-belief-net-model-for-visual-area-v2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Li, Z., Li J. , Menzel W. , Schmit T. , and Ackerman S. , 2007: Comparison between current and future environmental satellite imagers on cloud classification using MODIS. Remote Sens. Environ., 108, 311326, doi:10.1016/j.rse.2006.11.023.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Lu, X., Tsao Y. , Matsuda S. , and Hori C. , 2013: Speech enhancement based on deep denoising autoencoder. INTERSPEECH 2013, F. Bimbot et al., Eds., International Speech Communication Association, 436–440. [Available online at http://www.isca-speech.org/archive/interspeech_2013/i13_0436.html.]

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Palmacci M. , Cimini D. , Giuliani G. , and Turk F. J. , 2004: Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Trans. Geosci. Remote Sens., 42, 10181032, doi:10.1109/TGRS.2003.820312.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., Krajewski W. F. , Ferraro R. R. , and Ba M. B. , 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41, 10651080, doi:10.1175/1520-0450(2002)041<1065:EOBOSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moazami, S., Golian S. , Kavianpour M. R. , and Hong Y. , 2014: Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmos. Res., 137, 145166, doi:10.1016/j.atmosres.2013.08.016.

    • Search Google Scholar
    • Export Citation
  • Nasrollahi, N., Hsu K. L. , and Sorooshian S. , 2013: An Artificial Neural Network model to reduce false alarms in satellite precipitation products using MODIS and CloudSat observations. J. Hydrometeor., 14, 18721883, doi:10.1175/JHM-D-12-0172.1.

    • Search Google Scholar
    • Export Citation
  • Ranzato, M. A., Boureau Y.-L. , and LeCun Y. , 2007: Sparse feature learning for deep belief networks. Advances in Neural Information Processing Systems 20, J. C. Platt et al., Eds., MIT Press, 8 pp. [Available online at http://papers.nips.cc/paper/3363-sparse-feature-learning-for-deep-belief-networks.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rumelhart, D. E., Hinton G. E. , and Williams R. J. , 1986: Learning representations by back-propagating errors. Nature, 323, 533536, doi:10.1038/323533a0.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, doi:10.1175/2008JHM1052.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., and Coauthors, 2011: Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Amer. Meteor. Soc., 92, 13531357, doi:10.1175/2011BAMS3158.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, doi:10.1029/2009JD011949.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and Miller S. D. , 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE T Geosci. Remote Sens., 43, 10591069, doi:10.1109/TGRS.2004.841627.

    • Search Google Scholar
    • Export Citation
  • Vincent, P., Larochelle H. , Bengio Y. , and Manzagol P.-A. , 2008: Extracting and composing robust features with denoising autoencoders. Proc. 25th Int. Conf. on Machine Learning, Helsinki, Finlad, ACM, 10961103, doi:10.1145/1390156.1390294.

  • Vincent, P., Larochelle H. , Lajoie I. , Bengio Y. , and Manzagol P.-A. , 2010: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11, 33713408. [Available online at http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf.]

    • Search Google Scholar
    • Export Citation
  • Xie, J., Xu L. , and Chen E. , 2012: Image denoising and inpainting with deep neural networks. Advances in Neural Information Processing Systems 25, P. L. Bartlett et al., Eds., 350–358. [Available online at http://papers.nips.cc/paper/4686-image-denoising-and-inpainting-with-deep-neural-networks.pdf.]

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Shahbaba B. , and Zhao H. , 2015: Hamiltonian Monte Carlo acceleration using neural network surrogate functions. ArXiv, accessed 28 January 2016. [Available online at http://arxiv.org/abs/1506.05555.]

  • Zhou, G., Sohn K. , and Lee H. , 2012: Online incremental feature learning with denoising autoencoders. J. Mach. Learn. Res., 22, 1453–1461. [Available online at http://jmlr.csail.mit.edu/proceedings/papers/v22/zhou12b/zhou12b.pdf.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4216 967 122
PDF Downloads 3191 424 54