GRACE-Based Hydrological Drought Evaluation of the Yangtze River Basin, China

Dan Zhang Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, and State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

Search for other papers by Dan Zhang in
Current site
Google Scholar
PubMed
Close
,
Qi Zhang Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China

Search for other papers by Qi Zhang in
Current site
Google Scholar
PubMed
Close
,
Adrian D. Werner National Centre for Groundwater Research and Training, and School of the Environment, Flinders University, Adelaide, South Australia, Australia

Search for other papers by Adrian D. Werner in
Current site
Google Scholar
PubMed
Close
, and
Xiaomang Liu Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaomang Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, hydrological drought in the Yangtze River basin (YRB) is characterized based on Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS). An artificial neural network approach is applied to extend the GRACE TWS observations (2003–12) to a longer TWS time series (1979–2012), which is well matched (Nash–Sutcliff efficiency of 0.83) to the GRACE data. Hydrological drought is identified by water storage deficit (WSD; the shortfall in TWS from the average value) in three consecutive months. The method builds on previous research by considering potentially ineffective interdrought events and by characterizing drought recovery time from a multidecadal TWS time series. The results show that the YRB was in hydrological drought 29 times during 1979–2012, and the three subbasins of the YRB (upper, middle, and lower YRB) experienced between 21 and 28 hydrological drought events during the same period. The drought recovery time, defined as the time required for WSD to recover to average conditions, is evaluated by a simple statistical approach based on the empirical cumulative distribution function. The average drought recovery time is 3.3 months for the entire YRB and ranges from 2.3 to 3.4 months for the three subbasins. The severest YRB drought occurred during 2003–08 as a result of below-average precipitation, high temperatures, and intense human activities. The results demonstrate that GRACE data are useful for reconstructing the TWS time series for a large river basin, from which hydrological drought can be characterized, and for investigating spatial and temporal trends in water storage conditions.

Corresponding author address: Qi Zhang, Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China. E-mail: qzhang@niglas.ac.cn

Abstract

In this study, hydrological drought in the Yangtze River basin (YRB) is characterized based on Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS). An artificial neural network approach is applied to extend the GRACE TWS observations (2003–12) to a longer TWS time series (1979–2012), which is well matched (Nash–Sutcliff efficiency of 0.83) to the GRACE data. Hydrological drought is identified by water storage deficit (WSD; the shortfall in TWS from the average value) in three consecutive months. The method builds on previous research by considering potentially ineffective interdrought events and by characterizing drought recovery time from a multidecadal TWS time series. The results show that the YRB was in hydrological drought 29 times during 1979–2012, and the three subbasins of the YRB (upper, middle, and lower YRB) experienced between 21 and 28 hydrological drought events during the same period. The drought recovery time, defined as the time required for WSD to recover to average conditions, is evaluated by a simple statistical approach based on the empirical cumulative distribution function. The average drought recovery time is 3.3 months for the entire YRB and ranges from 2.3 to 3.4 months for the three subbasins. The severest YRB drought occurred during 2003–08 as a result of below-average precipitation, high temperatures, and intense human activities. The results demonstrate that GRACE data are useful for reconstructing the TWS time series for a large river basin, from which hydrological drought can be characterized, and for investigating spatial and temporal trends in water storage conditions.

Corresponding author address: Qi Zhang, Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China. E-mail: qzhang@niglas.ac.cn
Save
  • Akyuz, D. E., Bayazit M. , and Onoz B. , 2012: Markov chain models for hydrological drought characteristics. J. Hydrometeor., 13, 298309, doi:10.1175/JHM-D-11-019.1.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Armanios, D. E., and Fisher J. B. , 2014: Measuring water availability with limited ground data: Assessing the feasibility of an entirely remote-sensing-based hydrologic budget of the Rufiji basin, Tanzania, using TRMM, GRACE, MODIS, SRB, and AIRS. Hydrol. Processes, 28, 853867, doi:10.1002/hyp.9611.

    • Search Google Scholar
    • Export Citation
  • Breshears, D. D., and Coauthors, 2005: Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA, 102, 15 14415 148, doi:10.1073/pnas.0505734102.

    • Search Google Scholar
    • Export Citation
  • Cao, Y., Nan Z. , and Cheng G. , 2015: GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China. Remote Sens., 7, 10211047, doi:10.3390/rs70101021.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Wilson C. , Tapley B. , Yang Z. , and Niu G. , 2009: 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J. Geophys. Res., 114, B05404, doi:10.1029/2008JB006056.

    • Search Google Scholar
    • Export Citation
  • Dai, Z., Du J. , Li J. , Li W. , and Chen J. , 2008: Runoff characteristics of the Changjiang River during 2006: Effect of extreme drought and the impounding of the Three Gorges Dam. Geophys. Res. Lett., 35, L07406, doi:10.1029/2008GL033456.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., Evans J. , Groisman P. Ya. , Karl T. , Kunkel K. E. , and Ambenje P. , 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425, doi:10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gong, L., Xu C. , Chen D. , Halldin S. , and Chen Y. D. , 2006: Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol., 329, 620629, doi:10.1016/j.jhydrol.2006.03.027.

    • Search Google Scholar
    • Export Citation
  • Han, S. C., Jekeli C. , and Shum C. , 2004: Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J. Geophys. Res., 109, B04403, doi:10.1029/2003JB002501.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., Hanlon H. , and Beierkuhnlein C. , 2011: Climate science: Elusive extremes. Nat. Geosci., 4, 142143, doi:10.1038/ngeo1090.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., Jr., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165, doi:10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hisdal, H., and Tallaksen L. M. , 2003: Estimation of regional meteorological and hydrological drought characteristics: A case study for Denmark. J. Hydrol., 281, 230247, doi:10.1016/S0022-1694(03)00233-6.

    • Search Google Scholar
    • Export Citation
  • Horwath, M., and Dietrich R. , 2006: Errors of regional mass variations inferred from GRACE monthly solutions. Geophys. Res. Lett., 33, L07502, doi:10.1029/2005GL025550.

    • Search Google Scholar
    • Export Citation
  • Horwath, M., and Dietrich R. , 2009: Signal and error in mass change inferences from GRACE: The case of Antarctica. Geophys. J. Int., 177, 849864, doi:10.1111/j.1365-246X.2009.04139.x.

    • Search Google Scholar
    • Export Citation
  • Huang, Q., Sun Z. , Opp C. , Lotz T. , Jiang J. , and Lai X. , 2014: Hydrological drought at Dongting Lake: Its detection, characterization, and challenges associated with Three Gorges Dam in central Yangtze, China. Water Resour. Manage., 28, 53775388, doi:10.1007/s11269-014-0807-8.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Salama M. S. , Krol M. S. , van der Velde R. , Hoekstra A. Y. , Zhou Y. , and Su Z. , 2013: Analysis of long-term terrestrial water storage variations in the Yangtze River basin. Hydrol. Earth Syst. Sci., 17, 19852000, doi:10.5194/hess-17-1985-2013.

    • Search Google Scholar
    • Export Citation
  • Hvistendahl, M., 2008: China’s Three Gorges Dam: An environmental catastrophe? Scientific American, accessed 21 January 2015. [Available online at http://www.scientificamerican.com/article/chinas-three-gorges-dam-disaster/.]

  • Joodaki, G., Wahr J. , and Swenson S. , 2014: Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour. Res., 50, 26792692, doi:10.1002/2013WR014633.

    • Search Google Scholar
    • Export Citation
  • Kanji, G. K., 2006: The Kolmogorov–Smirnov test for goodness of fit. 100 Statistical Tests, Sage Publications, 76–77.

  • Krogh, S. A., Pomeroy J. W. , and McPhee J. , 2015: Physically based mountain hydrological modeling using reanalysis data in Patagonia. J. Hydrometeor., 16, 172193, doi:10.1175/JHM-D-13-0178.1.

    • Search Google Scholar
    • Export Citation
  • Lai, X., Jiang J. , Yang G. , and Lu X. , 2014: Should the Three Gorges Dam be blamed for the extremely low water levels in the middle-lower Yangtze River? Hydrol. Processes, 28, 150160, doi:10.1002/hyp.10077.

    • Search Google Scholar
    • Export Citation
  • Landerer, F., and Swenson S. , 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Leblanc, M., Tweed S. , Van Dijk A. , and Timbal B. , 2012: A review of historic and future hydrological changes in the Murray–Darling basin. Global Planet. Change, 80–81, 226246, doi:10.1016/j.gloplacha.2011.10.012.

    • Search Google Scholar
    • Export Citation
  • Lilliefors, H. W., 1967: On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Amer. Stat. Assoc., 62, 399402, doi:10.1080/01621459.1967.10482916.

    • Search Google Scholar
    • Export Citation
  • Liu, X., Liu C. , Luo Y. , Zhang M. , and Xia J. , 2012: Dramatic decrease in streamflow from the headwater source in the central route of China’s water diversion project: Climatic variation or human influence? J. Geophys. Res., 117, D06113, doi:10.1029/2011JD016879.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Zhao X. , and Wu G. , 2014: A primary investigation on the formation of frequent droughts in the Poyang Lake basin in recent decade (in Chinese). Resour. Environ. Yangtze Basin, 23, 131138.

    • Search Google Scholar
    • Export Citation
  • Long, D., Scanlon B. R. , Longuevergne L. , Sun A. Y. , Fernando D. N. , and Save H. , 2013: GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett., 40, 33953401, doi:10.1002/grl.50655.

    • Search Google Scholar
    • Export Citation
  • Long, D., Shen Y. J. , Sun A. , Hong Y. , Longuevergne L. , Yang Y. T. , Li B. , and Chen L. , 2014: Drought and flood monitoring for a large karst plateau in southwest China using extended GRACE data. Remote Sens. Environ., 155, 145160, doi:10.1016/j.rse.2014.08.006.

    • Search Google Scholar
    • Export Citation
  • Long, D., Longuevergne L. , and Scanlon B. R. , 2015: Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resour. Res., 51, 25742594, doi:10.1002/2014WR016853.

    • Search Google Scholar
    • Export Citation
  • Lu, E., and Coauthors, 2014: The atmospheric anomalies associated with the drought over the Yangtze River basin during spring 2011. J. Geophys. Res. Atmos., 119, 58815894, doi:10.1002/2014JD021558.

    • Search Google Scholar
    • Export Citation
  • Maidment, D. R., 1992: Handbook of Hydrology. McGraw-Hill, 1424 pp.

  • Meehl, G. A., Covey C. , Taylor K. E. , Delworth T. , Stouffer R. J. , Latif M. , McAvaney B. , and Mitchell J. F. , 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Nalbantis, I., and Tsakiris G. , 2009: Assessment of hydrological drought revisited. Water Resour. Manage., 23, 881897, doi:10.1007/s11269-008-9305-1.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., 2012: The 2011 Texas Drought. Texas Water J., 3, 5995. [Available online at https://journals.tdl.org/twj/index.php/twj/article/view/6463/6066.]

    • Search Google Scholar
    • Export Citation
  • Oliveira, P. T. S., Nearing M. A. , Moran M. S. , Goodrich D. C. , Wendland E. , and Gupta H. V. , 2014: Trends in water balance components across the Brazilian Cerrado. Water Resour. Res., 50, 71007114, doi:10.1002/2013WR015202.

    • Search Google Scholar
    • Export Citation
  • Pan, M., Sahoo A. K. , Troy T. J. , Vinukollu R. K. , Sheffield J. , and Wood E. F. , 2012: Multisource estimation of long-term terrestrial water budget for major global river basins. J. Climate, 25, 31913206, doi:10.1175/JCLI-D-11-00300.1.

    • Search Google Scholar
    • Export Citation
  • Ravn, M. O., and Uhlig H. , 2002: On adjusting the Hodrick–Prescott filter for the frequency of observations. Rev. Econ. Stat., 84, 371376, doi:10.1162/003465302317411604.

    • Search Google Scholar
    • Export Citation
  • Reager, J., and Famiglietti J. S. , 2013: Characteristic mega-basin water storage behavior using GRACE. Water Resour. Res., 49, 33143329, doi:10.1002/wrcr.20264.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Famiglietti J. , Chen J. , Seneviratne S. , Viterbo P. , Holl S. , and Wilson C. , 2004: Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31, L20504, doi:10.1029/2004GL020873.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., and Wood A. W. , 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, doi:10.1029/2007GL032487.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., Kharin V. , Zwiers F. , Zhang X. , and Bronaugh D. , 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Search Google Scholar
    • Export Citation
  • Sun, A. Y., 2013: Predicting groundwater level changes using GRACE data. Water Resour. Res., 49, 59005912, doi:10.1002/wrcr.20421.

  • Swenson, S., and Wahr J. , 2002: Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res., 107, 2193, doi:10.1029/2001JB000576.

    • Search Google Scholar
    • Export Citation
  • Tang, J. S., Cheng H. W. , and Liu L. , 2014: Assessing the recent droughts in southwestern China using satellite gravimetry. Water Resour. Res., 50, 30303038, doi:10.1002/2013WR014656.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., Bettadpur S. , Ries J. C. , Thompson P. F. , and Watkins M. M. , 2004a: GRACE measurements of mass variability in the earth system. Science, 305, 503505, doi:10.1126/science.1099192.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., Bettadpur S. , Watkins M. , and Reigber C. , 2004b: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., Stouffer R. J. , and Meehl G. A. , 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., Reager J. T. , Famiglietti J. S. , and Rodell M. , 2014: A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 15371545, doi:10.1002/2014GL059323.

    • Search Google Scholar
    • Export Citation
  • Varis, O., and Vakkilainen P. , 2001: China’s 8 challenges to water resources management in the first quarter of the 21st century. Geomorphology, 41, 93104, doi:10.1016/S0169-555X(01)00107-6.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., Beguería S. , López-Moreno J. I. , Angulo M. , and El Kenawy A. , 2010: A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer drought severity index. J. Hydrometeor., 11, 10331043, doi:10.1175/2010JHM1224.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Huang J. , Li J. , Rivera A. , McKenney D. W. , and Sheffield J. , 2014: Assessment of water budget for sixteen large drainage basins in Canada. J. Hydrol., 512, 115, doi:10.1016/j.jhydrol.2014.02.058.

    • Search Google Scholar
    • Export Citation
  • Wang, X., de Linage C. , Famiglietti J. , and Zender C. S. , 2011: Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements. Water Resour. Res., 47, W12502, doi:10.1029/2011WR010534.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and Feddema J. J. , 1992: A more rational climatic moisture index. Prof. Geogr., 44, 8488, doi:10.1111/j.0033-0124.1992.00084.x.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., Ding Y. , Pan J. , Wang H. , and Gregg J. , 2008: Climate change—The Chinese challenge. Science, 319, 730731, doi:10.1126/science.1153368.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., Hong H. , Zhang Q. , and Li X. , 2015: Attribution of the changes in annual streamflow in the Yangtze River basin over the past 146 years. Theor. Appl. Climatol., 119, 323332, doi:10.1007/s00704-014-1121-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Li L. , Wang Y. G. , Werner A. D. , Xin P. , Jiang T. , and Barry D. A. , 2012: Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophys. Res. Lett., 39, L20402, doi:10.1029/2012GL053431.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Ye X. , Werner A. D. , Li Y. , Yao J. , Li X. , and Xu C. , 2014: An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts. J. Hydrol., 517, 425434, doi:10.1016/j.jhydrol.2014.05.051.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Chao B. , Chen J. , and Wilson C. , 2015: Terrestrial water storage anomalies of Yangtze River basin droughts observed by GRACE and connections with ENSO. Global Planet. Change, 126, 3545, doi:10.1016/j.gloplacha.2015.01.002.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., Nijssen B. , Huffman G. J. , and Lettenmaier D. P. , 2014: Evaluation of real-time satellite precipitation data for global drought monitoring. J. Hydrometeor., 15, 16511660, doi:10.1175/JHM-D-13-0128.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3343 1257 181
PDF Downloads 1958 398 33