Indications for Protracted Groundwater Depletion after Drought over the Central Valley of California

S.-Y. Simon Wang Department of Plants, Soils and Climate, and Utah Climate Center, Utah State University, Logan, Utah

Search for other papers by S.-Y. Simon Wang in
Current site
Google Scholar
PubMed
Close
,
Yen-Heng Lin Utah Climate Center, Utah State University, Logan, Utah

Search for other papers by Yen-Heng Lin in
Current site
Google Scholar
PubMed
Close
,
Robert R. Gillies Department of Plants, Soils and Climate, and Utah Climate Center, Utah State University, Logan, Utah

Search for other papers by Robert R. Gillies in
Current site
Google Scholar
PubMed
Close
, and
Kirsti Hakala National Research Program, U.S. Geological Survey, Lakewood, Colorado

Search for other papers by Kirsti Hakala in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ongoing (2014–16) drought in the state of California has played a major role in the depletion of groundwater. Within California’s Central Valley, home to one of the world’s most productive agricultural regions, drought and increased groundwater depletion occurs almost hand in hand, but this relationship appears to have changed over the last decade. Data derived from 497 wells have revealed a continued depletion of groundwater lasting a full year after drought, a phenomenon that was not observed in earlier records before the twenty-first century. Possible causes include 1) lengthening of drought associated with amplification in the 4–6-yr drought and El Niño frequency since the late 1990s and 2) intensification of drought and increased pumping that enhances depletion. Altogether, the implication is that current groundwater storage in the Central Valley will likely continue to diminish even further in 2016, regardless of the drought status.

Utah Agricultural Experiment Station Publication Number 8720.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0105.s1.

Current affiliation: Department of Geography, University of Zurich, Zurich, Switzerland.

Corresponding author address: S.-Y. Simon Wang, Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322. E-mail: simon.wang@usu.edu

Abstract

Ongoing (2014–16) drought in the state of California has played a major role in the depletion of groundwater. Within California’s Central Valley, home to one of the world’s most productive agricultural regions, drought and increased groundwater depletion occurs almost hand in hand, but this relationship appears to have changed over the last decade. Data derived from 497 wells have revealed a continued depletion of groundwater lasting a full year after drought, a phenomenon that was not observed in earlier records before the twenty-first century. Possible causes include 1) lengthening of drought associated with amplification in the 4–6-yr drought and El Niño frequency since the late 1990s and 2) intensification of drought and increased pumping that enhances depletion. Altogether, the implication is that current groundwater storage in the Central Valley will likely continue to diminish even further in 2016, regardless of the drought status.

Utah Agricultural Experiment Station Publication Number 8720.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0105.s1.

Current affiliation: Department of Geography, University of Zurich, Zurich, Switzerland.

Corresponding author address: S.-Y. Simon Wang, Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322. E-mail: simon.wang@usu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.77 MB)
Save
  • AghaKouchak, A., Cheng L. , Mazdiyasni O. , and Farahmand A. , 2014a: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett., 41, 88478852, doi:10.1002/2014GL062308.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Feldman D. , Stewardson M. J. , Saphores J.-D. , Grant S. , and Sanders B. , 2014b: Australia’s drought: Lessons for California. Science, 343, 14301431, doi:10.1126/science.343.6178.1430.

    • Search Google Scholar
    • Export Citation
  • Anderson, R. G., Lo M. H. , Swenson S. , Famiglietti J. S. , Tang Q. , Skaggs T. H. , Lin Y. H. , and Wu R. J. , 2015: Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models. Geosci. Model Dev., 8, 30213031, doi:10.5194/gmd-8-3021-2015.

    • Search Google Scholar
    • Export Citation
  • Bertoldi, G. L., Johnston R. H. , and Evenson L. D. , 1991: Ground water in the Central Valley, California—A summary report. USGS Professional Paper 1401-A, 44 pp. [Available online at http://pubs.usgs.gov/pp/1401a/report.pdf.]

  • Castle, S. L., Thomas B. F. , Reager J. T. , Rodell M. , Swenson S. C. , and Famiglietti J. S. , 2014: Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophys. Res. Lett., 41, 59045911, doi:10.1002/2014GL061055.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., Das T. , Pierce D. W. , Barnett T. P. , Tyree M. , and Gershunov A. , 2010: Future dryness in the Southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA, 107, 21 27121 276, doi:10.1073/pnas.0912391107.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., Swain D. L. , and Touma D. , 2015: Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA, 112, 39313936, doi:10.1073/pnas.1422385112.

    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., 2014: The global groundwater crisis. Nat. Climate Change, 4, 945948, doi:10.1038/nclimate2425.

  • Famiglietti, J. S., and Coauthors, 2011: Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett., 38, L03403, doi:10.1029/2010GL046442.

    • Search Google Scholar
    • Export Citation
  • Faunt, C. C., 2009: Groundwater availability of the Central Valley aquifer, California. USGS Professional Paper 1766, 225 pp. [Available online at http://pubs.usgs.gov/pp/1766/PP_1766.pdf.]

  • Gershunov, A., Schneider N. , and Barnett T. , 2001: Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: Signal or noise? J. Climate, 14, 24862492, doi:10.1175/1520-0442(2001)014<2486:LFMOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffin, D., and Anchukaitis K. J. , 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 90179023, doi:10.1002/2014GL062433.

    • Search Google Scholar
    • Export Citation
  • Grinsted, A., Moore J. C. , and Jevrejeva S. , 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561566, doi:10.5194/npg-11-561-2004.

    • Search Google Scholar
    • Export Citation
  • Howard, B. C., 2014: California drought spurs groundwater drilling boom in Central Valley. National Geographic, 16 August. [Available online at http://news.nationalgeographic.com/news/2014/08/140815-central-valley-california-drilling-boom-groundwater-drought-wells/.]

  • Howitt, R., Medellín-Azuara J. , MacEwan D. , Lund J. , and Sumner D. , 2014: Economic analysis of the 2014 drought for California agriculture. Center for Watershed Sciences, University of California, Davis, 20 pp. [Available online at https://watershed.ucdavis.edu/files/content/news/Economic_Impact_of_the_2014_California_Water_Drought.pdf.]

  • James, I., 2014: In California, record heat adding to extreme drought. USA Today, 11 August. [Available online at http://www.usatoday.com/story/news/nation/2014/08/11/record-heat-extreme-drought-california/13904797/.]

  • Kennedy, C., 2014: Groundwater: California’s big unknown. NOAA, accessed 2 February 2016. [Available online at https://www.climate.gov/news-features/event-tracker/groundwater-california%E2%80%99s-big-unknown.]

  • Landerer, F., and Swenson S. , 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Long, D., Scanlon B. R. , Longuevergne L. , Sun A. Y. , Fernando D. N. , and Save H. , 2013: GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett., 40, 33953401, doi:10.1002/grl.50655.

    • Search Google Scholar
    • Export Citation
  • MacDonald, G. M., 2010: Water, climate change, and sustainability in the Southwest. Proc. Natl. Acad. Sci. USA, 107, 21 25621 262, doi:10.1073/pnas.0909651107.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Chen J. , Kato H. , Famiglietti J. S. , Nigro J. , and Wilson C. R. , 2007: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J., 15, 159166, doi:10.1007/s10040-006-0103-7.

    • Search Google Scholar
    • Export Citation
  • Scanlon, B., Longuevergne L. , and Long D. , 2012: Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res., 48, W04520, doi:10.1029/2011WR011312.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Vecchi G. A. , 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282, doi:10.1073/pnas.0910856107.

    • Search Google Scholar
    • Export Citation
  • St. George, S., and Ault T. R. , 2011: Is energetic decadal variability a stable feature of the central Pacific Coast’s winter climate? J. Geophys. Res., 116, D12102, doi:10.1029/2010JD015325.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and Compo G. P. , 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., Gillies R. R. , Jin J. , and Hipps L. E. , 2009: Recent rainfall cycle in the Intermountain Region as a quadrature amplitude modulation from the Pacific decadal oscillation. Geophys. Res. Lett., 36, L02705, doi:10.1029/2008GL036329.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., Hipps L. , Gillies R. R. , and Yoon J.-H. , 2014: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, doi:10.1002/2014GL059748.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., Huang W.-R. , and Yoon J.-H. , 2015: The North American winter ‘dipole’ and extremes activity: A CMIP5 assessment. Atmos. Sci. Lett., 16, 338345, doi:10.1002/asl2.565.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., Hidalgo H. G. , Cayan D. R. , and Swetnam T. W. , 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, doi:10.1126/science.1128834.

    • Search Google Scholar
    • Export Citation
  • Yoon, J. H., Wang S.-Y. , Gillies R. R. , Hipps L. , Kravitz B. , and Rasch P. J. , 2015a: Extreme fire season in California: A glimpse into the future? Bull. Amer. Meteor. Soc., 96, S5S9, doi:10.1175/BAMS-EEE_2014_ch2.1.

    • Search Google Scholar
    • Export Citation
  • Yoon, J. H., Wang S.-Y. , Gillies R. R. , Kravitz B. , Hipps L. E. , and Rasch P. J. , 2015b: Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat. Commun., 6, 8657, doi:10.1038/ncomms9657.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1889 1091 343
PDF Downloads 577 70 9