Evaluating Regional and Global Hydrological Models against Streamflow and Evapotranspiration Measurements

Yongqiang Zhang CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Yongqiang Zhang in
Current site
Google Scholar
PubMed
Close
,
Hongxing Zheng CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Hongxing Zheng in
Current site
Google Scholar
PubMed
Close
,
Francis H. S. Chiew CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Francis H. S. Chiew in
Current site
Google Scholar
PubMed
Close
,
Jorge Peña- Arancibia CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Jorge Peña- Arancibia in
Current site
Google Scholar
PubMed
Close
, and
Xinyao Zhou Key Laboratory of Agricultural Water Resources, Key Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China

Search for other papers by Xinyao Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land surface and global hydrological models are often used to characterize global water and energy fluxes and stores and to model their future trajectories. This study evaluates estimates of streamflow and evapotranspiration (ET) obtained with a priori parameterization from a land surface model [CSIRO Atmosphere Biosphere Land Exchange (CABLE)] and a global hydrological model (H08) against a global dataset of streamflow from 644 largely unregulated catchments and ET from 98 flux towers and benchmarks their performance against two lumped conceptual daily rainfall–runoff models [modèle du Génie Rural à 4 paramètres Journalier (GR4J) and a simplified version of the HYDROLOG model (SIMHYD)]. The results show that all four models perform poorly in simulating the monthly and annual runoff values, with the rainfall–runoff models outperforming both CABLE and H08. The model biases in runoff are generally reflected as a complementary opposite bias in ET. All models can generally reproduce the observed seasonal and interannual runoff variability. The correlations between the modeled and observed runoff time series are reasonable, with the rainfall–runoff models performing slightly better than CABLE and H08 at the monthly time scale and all four models performing similarly at the annual time scale. The results suggest that while the land surface and global hydrological models cannot adequately simulate the actual runoff time series and long-term average volumes, they can reasonably simulate the monthly and interannual runoff variability and trends and can therefore be reliably used for broadscale or comparative regional and global water and energy balance assessments and simulations of future trajectories. They can be improved through validating the models or calibrating some of the more sensitive and less physically based parameters.

Corresponding author address: Yongqiang Zhang, CSIRO Land and Water, GPO Box 1666, Canberra ACT 2601, Australia. E-mail: yongqiang.zhang@csiro.au

Abstract

Land surface and global hydrological models are often used to characterize global water and energy fluxes and stores and to model their future trajectories. This study evaluates estimates of streamflow and evapotranspiration (ET) obtained with a priori parameterization from a land surface model [CSIRO Atmosphere Biosphere Land Exchange (CABLE)] and a global hydrological model (H08) against a global dataset of streamflow from 644 largely unregulated catchments and ET from 98 flux towers and benchmarks their performance against two lumped conceptual daily rainfall–runoff models [modèle du Génie Rural à 4 paramètres Journalier (GR4J) and a simplified version of the HYDROLOG model (SIMHYD)]. The results show that all four models perform poorly in simulating the monthly and annual runoff values, with the rainfall–runoff models outperforming both CABLE and H08. The model biases in runoff are generally reflected as a complementary opposite bias in ET. All models can generally reproduce the observed seasonal and interannual runoff variability. The correlations between the modeled and observed runoff time series are reasonable, with the rainfall–runoff models performing slightly better than CABLE and H08 at the monthly time scale and all four models performing similarly at the annual time scale. The results suggest that while the land surface and global hydrological models cannot adequately simulate the actual runoff time series and long-term average volumes, they can reasonably simulate the monthly and interannual runoff variability and trends and can therefore be reliably used for broadscale or comparative regional and global water and energy balance assessments and simulations of future trajectories. They can be improved through validating the models or calibrating some of the more sensitive and less physically based parameters.

Corresponding author address: Yongqiang Zhang, CSIRO Land and Water, GPO Box 1666, Canberra ACT 2601, Australia. E-mail: yongqiang.zhang@csiro.au
Save
  • Abramowitz, G., and Pitman A. , 2007: Systematic bias in land surface models. J. Hydrometeor., 8, 9891001, doi:10.1175/JHM628.1.

  • Alcamo, J., Doll P. , Henrichs T. , Kaspar F. , Lehner B. , Rosch T. , and Siebert S. , 2003: Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J., 48, 317337, doi:10.1623/hysj.48.3.317.45290.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Viterbo P. , Beljaars A. , van den Hurk B. , Hirschi M. , Betts A. K. , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Bardossy, A., 2007: Calibration of hydrological model parameters for ungauged catchments. Hydrol. Earth Syst. Sci., 11, 703710, doi:10.5194/hess-11-703-2007.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Blyth, E., Gash J. , Lloyd A. , Pryor M. , Weedon G. P. , and Shuttleworth J. , 2010: Evaluating the JULES land surface model energy fluxes using FLUXNET data. J. Hydrometeor., 11, 509519, doi:10.1175/2009JHM1183.1.

    • Search Google Scholar
    • Export Citation
  • Bondeau, A., and Coauthors, 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol., 13, 679706, doi:10.1111/j.1365-2486.2006.01305.x.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17, 187208, doi:10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, X., Yang Z.-L. , David C. H. , Niu G.-Y. , and Rodell M. , 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River basin. J. Geophys. Res. Atmos., 119, 2338, doi:10.1002/2013JD020792.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., Teng J. , Vaze J. , Post D. A. , Perraud J. M. , Kirono D. G. C. , and Viney N. R. , 2009: Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method. Water Resour. Res., 45, W10414, doi:10.1029/2008WR007338.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., Kirono D. G. C. , Kent D. M. , Frost A. J. , Charles S. P. , Timbal B. , Nguyen K. C. , and Fu G. , 2010: Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates. J. Hydrol., 387, 1023, doi:10.1016/j.jhydrol.2010.03.025.

    • Search Google Scholar
    • Export Citation
  • Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701722, doi:10.5194/gmd-4-701-2011.

    • Search Google Scholar
    • Export Citation
  • Coron, L., Andreassian V. , Perrin C. , Lerat J. , Vaze J. , Bourqui M. , and Hendrickx F. , 2012: Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resour. Res., 48, W05552, doi:10.1029/2011WR011721.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., Wood E. F. , and Pan M. , 2003: Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals. J. Geophys. Res., 108, 4725, doi:10.1029/2002JD003292.

    • Search Google Scholar
    • Export Citation
  • De Kauwe, M. G., and Coauthors, 2015: A test of an optimal stomatal conductance scheme within the CABLE land surface model. Geosci. Model Dev., 8, 431452, doi:10.5194/gmd-8-431-2015.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Polcher J. , 1998: Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol. Earth Syst. Sci., 2, 239255, doi:10.5194/hess-2-239-1998.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., and Coauthors, 2006: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol., 320, 317, doi:10.1016/j.jhydrol.2005.07.031.

    • Search Google Scholar
    • Export Citation
  • Franz, K. J., and Karsten L. R. , 2013: Calibration of a distributed snow model using MODIS snow covered area data. J. Hydrol., 494, 160175, doi:10.1016/j.jhydrol.2013.04.026.

    • Search Google Scholar
    • Export Citation
  • Fung, F., Lopez A. , and New M. , 2011: Water availability in +2°C and +4°C worlds. Philos. Trans. Roy. Soc. London, A369, 99116, doi:10.1098/rsta.2010.0293.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., Wagener T. , Tallaksen L. M. , and Engeland K. , 2012: Evaluation of nine large-scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resour. Res., 48, W11504, doi:10.1029/2011WR010911.

    • Search Google Scholar
    • Export Citation
  • Gulden, L. E., Rosero E. , Yang Z.-L. , Rodell M. , Jackson C. S. , Niu G.-Y. , Yeh P. J.-F. , and Famiglietti J. , 2007: Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile? Geophys. Res. Lett., 34, L09402, doi:10.1029/2007GL029804.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, doi:10.1175/2011JHM1324.1.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and Dumenil L. , 1997: A parametrization of the lateral waterflow for the global scale. Climate Dyn., 14, 1731, doi:10.1007/s003820050205.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , Oki T. , Masuda K. , Motoya K. , Shirakawa N. , Shen Y. , and Tanaka K. , 2008: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025, doi:10.5194/hess-12-1007-2008.

    • Search Google Scholar
    • Export Citation
  • Huang, M., and Liang X. , 2006: On the assessment of the impact of reducing parameters and identification of parameter uncertainties for a hydrologic model with applications to ungauged basins. J. Hydrol., 320, 3761, doi:10.1016/j.jhydrol.2005.07.010.

    • Search Google Scholar
    • Export Citation
  • Huang, M., Hou Z. , Leung L. R. , Ke Y. , Liu Y. , Fang Z. , and Sun Y. , 2013: Uncertainty analysis of runoff simulations and parameter identifiability in the Community Land Model: Evidence from MOPEX basins. J. Hydrometeor., 14, 17541772, doi:10.1175/JHM-D-12-0138.1.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., Grieser J. , Beck C. , Rudolf B. , and Rubel F. , 2006: World map of the Köppen–Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Kowalczyk, E., Wang Y. P. , Law R. M. , Davies H. L. , McGregor J. L. , and Abramowitz G. , 2006: CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research Paper 013, 37 pp. [Available online at https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:dfd74831-39c6-422a-896d-c0e71cdcc199.]

  • Lacombe, G., Cappelaere B. , and Leduc C. , 2008: Hydrological impact of water and soil conservation works in the Merguellil catchment of central Tunisia. J. Hydrol., 359, 210224, doi:10.1016/j.jhydrol.2008.07.001.

    • Search Google Scholar
    • Export Citation
  • Li, F., Zhang Y. , Xu Z. , Teng J. , Liu C. , Liu W. , and Mpelasoka F. , 2013: The impact of climate change on runoff in the southeastern Tibetan Plateau. J. Hydrol., 505, 188201, doi:10.1016/j.jhydrol.2013.09.052.

    • Search Google Scholar
    • Export Citation
  • Li, F., Zhang Y. , Xu Z. , Liu C. , Zhou Y. , and Liu W. , 2014: Runoff predictions in ungauged catchments in southeast Tibetan Plateau. J. Hydrol., 511, 2838, doi:10.1016/j.jhydrol.2014.01.014.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 2004: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res., 109, D07S91, doi:10.1029/2003JD003517.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97, 739774, doi:10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIntyre, N., Lee H. , Wheater H. , Young A. , and Wagener T. , 2005: Ensemble predictions of runoff in ungauged catchments. Water Resour. Res., 41, W12434, doi:10.1029/2005WR004289.

    • Search Google Scholar
    • Export Citation
  • Meigh, J. R., McKenzie A. A. , and Sene K. J. , 1999: A grid-based approach to water scarcity estimates for eastern and southern Africa. Water Resour. Manage., 13, 85115, doi:10.1023/A:1008025703712.

    • Search Google Scholar
    • Export Citation
  • Merz, R., and Bloschl G. , 2004: Regionalisation of catchment model parameters. J. Hydrol., 287, 95123, doi:10.1016/j.jhydrol.2003.09.028.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Dunne K. A. , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, doi:10.1038/nature04312.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Nasonova, O. N., Gusev Y. M. , and Kovalev Y. E. , 2009: Investigating the ability of a land surface model to simulate streamflow with the accuracy of hydrological models: A case study using MOPEX materials. J. Hydrometeor., 10, 11281150, doi:10.1175/2009JHM1083.1.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., Yang Z.-L. , Dickinson R. E. , Gulden L. E. , and Su H. , 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, doi:10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Oudin, L., Andréassian V. C. , Perrin C. , Michel C. , and Le Moine N. , 2008: Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resour. Res., 44, W03413, doi:10.1029/2007WR006240.

    • Search Google Scholar
    • Export Citation
  • Parajka, J., and Blöschl G. , 2008: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 240258, doi:10.1016/j.jhydrol.2008.06.006.

    • Search Google Scholar
    • Export Citation
  • Parajka, J., Merz R. , and Bloschl G. , 2005: A comparison of regionalisation methods for catchment model parameters. Hydrol. Earth Syst. Sci., 9, 157171, doi:10.5194/hess-9-157-2005.

    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, A193, 120145, doi:10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Perrin, C., Michel C. , and Andreassian V. , 2003: Improvement of a parsimonious model for streamflow simulation. J. Hydrol., 279, 275289, doi:10.1016/S0022-1694(03)00225-7.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Wood E. F. , and Roderick M. L. , 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, doi:10.1038/nature11575.

    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., and Coauthors, 2003: IAHS decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J., 48, 857880, doi:10.1623/hysj.48.6.857.51421.

    • Search Google Scholar
    • Export Citation
  • Takata, K., Emori S. , and Watanabe T. , 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Udnaes, H. C., Alfnes E. , and Andreassen L. M. , 2007: Improving runoff modelling using satellite-derived snow covered area? Nord. Hydrol., 38, 2132, doi:10.2166/nh.2007.032.

    • Search Google Scholar
    • Export Citation
  • Vaze, J., and Teng J. , 2011: Future climate and runoff projections across New South Wales, Australia: Results and practical applications. Hydrol. Processes, 25, 1835, doi:10.1002/hyp.7812.

    • Search Google Scholar
    • Export Citation
  • Vaze, J., Post D. A. , Chiew F. H. S. , Perraud J. M. , Viney N. R. , and Teng J. , 2010: Climate non-stationarity—Validity of calibrated rainfall–runoff models for use in climate change studies. J. Hydrol., 394, 447457, doi:10.1016/j.jhydrol.2010.09.018.

    • Search Google Scholar
    • Export Citation
  • Viney, N., Vaze J. , Chiew F. , and Perraud J. , 2008: Regionalisation of runoff generation across the Murray–Darling Basin using an ensemble of two rainfall–runoff models. Proceedings of Water Down Under 2008, M. Lambert, T. M. Daniell, and M. Leonard, Eds., Causal Productions, 1700–1711.

  • Viney, N., Perraud J. , Vaze J. , Chiew F. H. S. , Post D. A. , and Yang A. , 2009: The usefulness of bias constraints in model calibration for regionalisation to ungauged catchments. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, R. S. Anderssen, R. D. Braddock, and L. T. H. Newham, Eds., Modelling and Simulation Society of Australia and New Zealand, 3421–3427. [Available online at http://www.mssanz.org.au/modsim09/I7/viney_I7a.pdf.]

  • Vorosmarty, C. J., Meybeck M. , Fekete B. , Sharma K. , Green P. , and Syvitski J. P. M. , 2003: Anthropogenic sediment retention: Major global impact from registered river impoundments. Global Planet. Change, 39, 169190, doi:10.1016/S0921-8181(03)00023-7.

    • Search Google Scholar
    • Export Citation
  • Wada, Y., Wisser D. , and Bierkens M. F. P. , 2014: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn., 5, 1540, doi:10.5194/esd-5-15-2014.

    • Search Google Scholar
    • Export Citation
  • Wagener, T., and Wheater H. S. , 2006: Parameter estimation and regionalization for continuous rainfall–runoff models including uncertainty. J. Hydrol., 320, 132154, doi:10.1016/j.jhydrol.2005.07.015.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. P., and Coauthors, 2011: Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. J. Geophys. Res., 116, G01034, doi:10.1029/2010JG001385.

    • Search Google Scholar
    • Export Citation
  • Warszawski, L., Frieler K. , Huber V. , Piontek F. , Serdeczny O. , and Schewe J. , 2014: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proc. Natl. Acad. Sci. USA, 111, 32283232, doi:10.1073/pnas.1312330110.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Yang, Z. L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, doi:10.1029/2010JD015140.

    • Search Google Scholar
    • Export Citation
  • Zhang, H. Q., Pak B. , Wang Y. P. , Zhou X. Y. , Zhang Y. Q. , and Zhang L. , 2013: Evaluating surface water cycle simulated by the Australian Community Land Surface Model (CABLE) across different spatial and temporal domains. J. Hydrometeor., 14, 11191138, doi:10.1175/JHM-D-12-0123.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., and Chiew F. H. S. , 2009: Relative merits of different methods for runoff predictions in ungauged catchments. Water Resour. Res., 45, W07412, doi:10.1029/2008WR007504.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., Chiew F. H. S. , Zhang L. , Leuning R. , and Cleugh H. A. , 2008: Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman–Monteith equation. Water Resour. Res., 44, W10420, doi:10.1029/2007WR006563.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., Chiew F. H. S. , Zhang L. , and Li H. X. , 2009: Use of remotely sensed actual evapotranspiration to improve rainfall–runoff modelling in southeast Australia. J. Hydrometeor., 10, 969980, doi:10.1175/2009JHM1061.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., Viney N. R. , Chiew F. H. S. , van Dijk A. , and Liu Y. Y. , 2011: Improving hydrological and vegetation modelling using regional model calibration schemes together with remote sensing data. MODSIM2011: 19th International Congress on Modelling and Simulation, F. Chan, D. Marinova, and R. S. Anderssen, Eds., Modelling and Simulation Society of Australia and New Zealand, 3448–3454. [Available online at http://mssanz.org.au/modsim2011/I4/zhang.pdf.]

  • Zhang, Y. Q., Viney N. R. , Chen Y. , and Li H. Y. , 2013: Collation of Australian modeller’s streamflow dataset for 780 unregulated Australian catchments. CSIRO Doc., 117 pp.

  • Zhao, F., Chiew F. H. S. , Zhang L. , Vaze J. , Perraud J.-M. , and Li M. , 2012: Application of a macroscale hydrologic model to estimate streamflow across southeast Australia. J. Hydrometeor., 13, 12331250, doi:10.1175/JHM-D-11-0114.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X. Y., Zhang Y. , Wang Y. , Zhang H. , Vaze J. , Zhang L. , Yang Y. , and Zhou Y. , 2012: Benchmarking global land surface models against the observed mean annual runoff from 150 large basins. J. Hydrol., 470–471, 269279, doi:10.1016/j.jhydrol.2012.09.002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1287 273 39
PDF Downloads 905 103 8