The Intermediate Complexity Atmospheric Research Model (ICAR)

Ethan Gutmann Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Ethan Gutmann in
Current site
Google Scholar
PubMed
Close
,
Idar Barstad Uni Research Computing, Bergen, Norway

Search for other papers by Idar Barstad in
Current site
Google Scholar
PubMed
Close
,
Martyn Clark Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Martyn Clark in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Arnold Climate Preparedness and Resilience Programs, U.S. Army Corps of Engineers, Seattle, Washington

Search for other papers by Jeffrey Arnold in
Current site
Google Scholar
PubMed
Close
, and
Roy Rasmussen Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

With limited computational resources, there is a need for computationally frugal models. This is particularly the case for atmospheric sciences, which have long relied on either simplistic analytical solutions or computationally expensive numerical models. The simpler solutions are inadequate for many problems, while the cost of numerical models makes their use impossible for many problems, most notably high-resolution climate downscaling applications spanning large areas, long time periods, and many global climate projections. Here the Intermediate Complexity Atmospheric Research model (ICAR) is presented to provide a new step along the modeling complexity continuum. ICAR leverages an analytical solution for high-resolution perturbations to wind velocities, in conjunction with numerical physics schemes, that is, advection and cloud microphysics, to simulate the atmosphere. The focus of the initial development of ICAR is for predictions of precipitation, and eventually temperature, humidity, and radiation at the land surface. Comparisons between ICAR and the Weather Research and Forecasting (WRF) Model for simulations over an idealized mountain are presented, as well as among ICAR, WRF, and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) observation-based product for a year-long simulation over the Colorado Rockies. In the ideal simulations, ICAR matches WRF precipitation predictions across a range of environmental conditions with a coefficient of determination r2 of 0.92. In the Colorado Rockies, ICAR, WRF, and PRISM show very good agreement, with differences between ICAR and WRF comparable to the differences between WRF and PRISM in the cool season. For these simulations, WRF required 140–800 times more computational resources than ICAR.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Ethan Gutmann, Research Applications Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: gutmann@ucar.edu

Abstract

With limited computational resources, there is a need for computationally frugal models. This is particularly the case for atmospheric sciences, which have long relied on either simplistic analytical solutions or computationally expensive numerical models. The simpler solutions are inadequate for many problems, while the cost of numerical models makes their use impossible for many problems, most notably high-resolution climate downscaling applications spanning large areas, long time periods, and many global climate projections. Here the Intermediate Complexity Atmospheric Research model (ICAR) is presented to provide a new step along the modeling complexity continuum. ICAR leverages an analytical solution for high-resolution perturbations to wind velocities, in conjunction with numerical physics schemes, that is, advection and cloud microphysics, to simulate the atmosphere. The focus of the initial development of ICAR is for predictions of precipitation, and eventually temperature, humidity, and radiation at the land surface. Comparisons between ICAR and the Weather Research and Forecasting (WRF) Model for simulations over an idealized mountain are presented, as well as among ICAR, WRF, and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) observation-based product for a year-long simulation over the Colorado Rockies. In the ideal simulations, ICAR matches WRF precipitation predictions across a range of environmental conditions with a coefficient of determination r2 of 0.92. In the Colorado Rockies, ICAR, WRF, and PRISM show very good agreement, with differences between ICAR and WRF comparable to the differences between WRF and PRISM in the cool season. For these simulations, WRF required 140–800 times more computational resources than ICAR.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Ethan Gutmann, Research Applications Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: gutmann@ucar.edu
Save
  • Bárdossy, A., and Pegram G. , 2011: Downscaling precipitation using regional climate models and circulation patterns toward hydrology. Water Resour. Res., 47, W04505, doi:10.1029/2010WR009689.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Lettenmaier D. P. , 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121, 11951214, doi:10.1175/1520-0493(1993)121<1195:DMOTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barstad, I., and Gronas S. , 2006: Dynamical structures for southwesterly airflow over southern Norway: The role of dissipation. Tellus, 58A, 218, doi:10.1111/j.1600-0870.2006.00152.x.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , and Lucas-Picher P. , 2015: Assessing the limits of bias‐correcting climate model outputs for climate change impact studies. J. Geophys. Res. Atmos., 120, 11231136, doi:10.1002/2014JD022635.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Hay L. E. , 2004: Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. J. Hydrometeor., 5, 1532, doi:10.1175/1525-7541(2004)005<0015:UOMNWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., Gangopadhyay S. , Brandon D. , Werner K. , Hay L. , Rajagopalan B. , and Yates D. , 2004: A resampling procedure for generating conditioned daily weather sequences. Water Resour. Res., 40, W04304, doi:10.1029/2003WR002747.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2012: Yellowstone: IBM iDataPlex System (NCAR Community Computing). NCAR, accessed 26 January 2015. [Available online at http://n2t.net/ark:/85065/d7wd3xhc.]

  • Courant, R., Friedrichs K. , and Lewy H. , 1928: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 100, 3274, doi:10.1007/BF01448839.

    • Search Google Scholar
    • Export Citation
  • Courant, R., Isaacson E. , and Rees M. , 1952: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math., 5, 243255, doi:10.1002/cpa.3160050303.

    • Search Google Scholar
    • Export Citation
  • Crochet, P., Jóhannesson T. , Jónsson T. , Sigurðsson O. , Björnsson H. , Pálsson F. , and Barstad I. , 2007: Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J. Hydrometeor., 8, 12851306, doi:10.1175/2007JHM795.1.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Gibson W. P. , Taylor G. H. , Johnson G. L. , and Pasteris P. , 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113, doi:10.3354/cr022099.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Halbleib M. , Smith J. I. , Gibson W. P. , Doggett M. K. , Taylor G. H. , Curtis J. , and Pasteris P. P. , 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Denis, B., Cote J. , and Laprise R. , 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, doi:10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., Knutti R. , Solomon S. , and Phillips A. S. , 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1991: The third-order Adams–Bashforth method: An attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119, 702720, doi:10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and Klemp J. B. , 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., Graham N. E. , Carpenter T. M. , and Yao H. , 2005: Integrating climate–hydrology forecasts and multi-objective reservoir management for northern California. Eos, Trans. Amer. Geophys. Union, 86, 122127, doi:10.1029/2005EO120002.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., Rasmussen R. M. , Liu C. , Ikeda K. , Gochis D. J. , Clark M. P. , Dudhia J. , and Thompson G. , 2012: A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Climate, 25, 262281, doi:10.1175/2011JCLI4109.1.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., Pruitt T. , Clark M. P. , Brekke L. , Arnold J. R. , Raff D. A. , and Rasmussen R. M. , 2014: An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour. Res., 50, 71677186, doi:10.1002/2014WR015559.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., and Jacobeit J. , 2013: A novel approach to statistical downscaling considering nonstationarities: Application to daily precipitation in the Mediterranean area. J. Geophys. Res. Atmos., 118, 520533, doi:10.1002/jgrd.50112.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Jarosch, A. H., Anslow F. S. , and Clarke G. K. C. , 2012: High-resolution precipitation and temperature downscaling for glacier models. Climate Dyn., 38, 391409, doi:10.1007/s00382-010-0949-1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2014: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., Skamarock W. C. , and Dudhia J. , 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, doi:10.1175/MWR3440.1.

    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev., 7, 12971333, doi:10.5194/gmd-7-1297-2014.

    • Search Google Scholar
    • Export Citation
  • Langousis, A., and Kaleris V. , 2014: Statistical framework to simulate daily rainfall series conditional on upper-air predictor variables. Water Resour. Res., 50, 39073932, doi:10.1002/2013WR014936.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Ikeda K. , Thompson G. , Rasmussen R. , and Dudhia J. , 2011: High-resolution simulations of wintertime precipitation in the Colorado headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 35333553, doi:10.1175/MWR-D-11-00009.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and Miller M. J. , 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Hughes M. , Henn B. , Gutmann E. D. , Livneh B. , Dozier J. , and Neiman P. , 2015: High-elevation precipitation patterns: Using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. J. Hydrometeor., 16, 17731792, doi:10.1175/JHM-D-15-0019.1.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, doi:10.1175/JCLI-D-12-00821.1.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Hidalgo H. G. , Das T. , Dettinger M. D. , and Cayan D. R. , 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, doi:10.5194/hess-14-1125-2010.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2013: Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Climatic Change, 120, 965975, doi:10.1007/s10584-013-0831-3.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., Covey C. , McAvaney B. , Latif M. , and Stouffer R. J. , 2005: Overview of the Coupled Model Intercomparison Project. Bull. Amer. Meteor. Soc., 86, 8993, doi:10.1175/BAMS-86-1-89.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., Cayan D. R. , and Thrasher B. L. , 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, doi:10.1175/JHM-D-14-0082.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, doi:10.1175/JHM-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1978: Orographic precipitation model for hydrometeorological use. Atmospheric Science Paper 287, Colorado State University, 198 pp. [Available online at https://dspace.library.colostate.edu/handle/10217/169958.]

  • Rummukainen, M., 2010: State-of-the-art with regional climate models. Wiley Interdiscip. Rev.: Climate Change, 1, 8296, doi:10.1002/wcc.8.

    • Search Google Scholar
    • Export Citation
  • Sarker, R. P., 1966: A dynamical model of orographic rainfall. Mon. Wea. Rev., 94, 555572, doi:10.1175/1520-0493(1966)094<0555:ADMOOR>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1962: Gravity waves in the atmosphere as a three-dimensional problem. Quart. J. Roy. Meteor. Soc., 88, 412425, doi:10.1002/qj.49708837805.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. J. Appl. Meteor., 33, 11631175, doi:10.1175/1520-0450(1994)033<1163:ADMFEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Klemp J. B. , 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87230, doi:10.1016/S0065-2687(08)60262-9.

  • Smith, R. B., and Barstad I. , 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, doi:10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and Margolin L. G. , 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140, 459480, doi:10.1006/jcph.1998.5901.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., Forest C. E. , and Keller K. , 2015: Effects of initial conditions uncertainty on regional climate variability: An analysis using a low-resolution CESM ensemble. Geophys. Res. Lett., 42, 54685476, doi:10.1002/2015GL064546.

    • Search Google Scholar
    • Export Citation
  • Stoner, A. M. K., Hayhoe K. , Yang X. , and Wuebbles D. J. , 2013: An asynchronous regional regression model for statistical downscaling of daily climate variables. Int. J. Climatol., 33, 24732494, doi:10.1002/joc.3603.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Vrac, M., Stein M. , and Hayhoe K. , 2007: Statistical downscaling of precipitation through nonhomogeneous stochastic weather typing. Climate Res., 34, 169184, doi:10.3354/cr00696.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 1998: Statistical downscaling of daily precipitation using daily airflow and seasonal teleconnection indices. Climate Res., 10, 163178, doi:10.3354/cr010163.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., Maurer E. P. , Kumar A. , and Lettenmaier D. P. , 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2583 555 60
PDF Downloads 1576 265 16