Abstract
With limited computational resources, there is a need for computationally frugal models. This is particularly the case for atmospheric sciences, which have long relied on either simplistic analytical solutions or computationally expensive numerical models. The simpler solutions are inadequate for many problems, while the cost of numerical models makes their use impossible for many problems, most notably high-resolution climate downscaling applications spanning large areas, long time periods, and many global climate projections. Here the Intermediate Complexity Atmospheric Research model (ICAR) is presented to provide a new step along the modeling complexity continuum. ICAR leverages an analytical solution for high-resolution perturbations to wind velocities, in conjunction with numerical physics schemes, that is, advection and cloud microphysics, to simulate the atmosphere. The focus of the initial development of ICAR is for predictions of precipitation, and eventually temperature, humidity, and radiation at the land surface. Comparisons between ICAR and the Weather Research and Forecasting (WRF) Model for simulations over an idealized mountain are presented, as well as among ICAR, WRF, and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) observation-based product for a year-long simulation over the Colorado Rockies. In the ideal simulations, ICAR matches WRF precipitation predictions across a range of environmental conditions with a coefficient of determination r2 of 0.92. In the Colorado Rockies, ICAR, WRF, and PRISM show very good agreement, with differences between ICAR and WRF comparable to the differences between WRF and PRISM in the cool season. For these simulations, WRF required 140–800 times more computational resources than ICAR.
The National Center for Atmospheric Research is sponsored by the National Science Foundation.